首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The two-photon excitation spectrum of phenanthrene in liquid solution is reported in the energy range 29000–49000 cm?1. Comparison with the one-photon spectrum and extended CNDO/S calculations allows assignment of eight singlet states. The strongest two-photon band is assigned to the Bb state not seen directly in the UV spectrum. This high intensity and other features of the spectrum are in sharp contrast to the pairing selection rules which forbid two-proton transitions to “plus” states in alternate hydrocarbons.  相似文献   

2.
To understand the low-lying singlet states of dithienyl polyenes, we investigated the solvatochromism of a series of α,ω-di(2-dithienyl 3,4-butyl) polyenes having n=1–5 double bonds. Absorption and emission spectra were collected in a series of aprotic solvents. The absorption energy dispersion effect sensitivity increased smoothly with n, reaching asymptotic behavior as n approached 5. The emission energy had less solvent sensitivity. The trends gave evidence for the existence of a 1B*u absorbing state and a 1A*g emitting state. We observed sensitivity of the absorbing and emitting states to solute–solvent electrostatic interactions, suggesting the dithienyl polyenes had a polar ground state conformation.  相似文献   

3.
The singlet ground ((approximate)X(1)Sigma1+) and excited (1Sigma-,1Delta) states of HCP and HPC have been systematically investigated using ab initio molecular electronic structure theory. For the ground state, geometries of the two linear stationary points have been optimized and physical properties have been predicted utilizing restricted self-consistent field theory, coupled cluster theory with single and double excitations (CCSD), CCSD with perturbative triple corrections [CCSD(T)], and CCSD with partial iterative triple excitations (CCSDT-3 and CC3). Physical properties computed for the global minimum ((approximate)X(1)Sigma+HCP) include harmonic vibrational frequencies with the cc-pV5Z CCSD(T) method of omega1=3344 cm(-1), omega2=689 cm(-1), and omega3=1298 cm(-1). Linear HPC, a stationary point of Hessian index 2, is predicted to lie 75.2 kcal mol(-1) above the global minimum HCP. The dissociation energy D0[HCP((approximate)X(1)Sigma+)-->H(2S)+CP(X2Sigma+)] of HCP is predicted to be 119.0 kcal mol(-1), which is very close to the experimental lower limit of 119.1 kcal mol(-1). Eight singlet excited states were examined and their physical properties were determined employing three equation-of-motion coupled cluster methods (EOM-CCSD, EOM-CCSDT-3, and EOM-CC3). Four stationary points were located on the lowest-lying excited state potential energy surface, 1Sigma- -->1A", with excitation energies Te of 101.4 kcal mol(-1) (1A"HCP), 104.6 kcal mol(-1)(1Sigma-HCP), 122.3 kcal mol(-1)(1A" HPC), and 171.6 kcal mol(-1)(1Sigma-HPC) at the cc-pVQZ EOM-CCSDT-3 level of theory. The physical properties of the 1A" state with a predicted bond angle of 129.5 degrees compare well with the experimentally reported first singlet state ((approximate)A1A"). The excitation energy predicted for this excitation is T0=99.4 kcal mol(-1) (34 800 cm(-1),4.31 eV), in essentially perfect agreement with the experimental value of T0=99.3 kcal mol(-1)(34 746 cm(-1),4.308 eV). For the second lowest-lying excited singlet surface, 1Delta-->1A', four stationary points were found with Te values of 111.2 kcal mol(-1) (2(1)A' HCP), 112.4 kcal mol(-1) (1Delta HPC), 125.6 kcal mol(-1)(2(1)A' HCP), and 177.8 kcal mol(-1)(1Delta HPC). The predicted CP bond length and frequencies of the 2(1)A' state with a bond angle of 89.8 degrees (1.707 A, 666 and 979 cm(-1)) compare reasonably well with those for the experimentally reported (approximate)C(1)A' state (1.69 A, 615 and 969 cm(-1)). However, the excitation energy and bond angle do not agree well: theoretical values of 108.7 kcal mol(-1) and 89.8 degrees versus experimental values of 115.1 kcal mol(-1) and 113 degrees. of 115.1 kcal mol(-1) and 113 degrees.  相似文献   

4.
《Chemical physics letters》1985,118(5):468-473
The two-photon excitation spectrum of the first excited state of anthracene in fluorene and biphenyl at 4.2 K has been measured. Intensity is induced into the origin by the static dipole moment of fluorene, and into b1u vibrons through coupling to an Ag state near 29400 cm−1; the nature of this Ag state is discussed.  相似文献   

5.
4-(N,N-Dimethyl-amino)benzonitrile (DMABN) is a prototype molecule for dual fluorescence. The anomalous emission has been attributed to an intramolecular charge-transfer (ICT) state, and the structure of the latter is still subject to some controversy. We applied a recently developed analytical gradient code for the approximate coupled-cluster singles-and-doubles method CC2 in combination with accurate basis sets to address this problem. Fully optimized excited state structures are presented for the ICT state and the so-called locally excited state, and recent transient IR and Raman measurements on the excited states are interpreted by means of calculated harmonic frequencies. Strong evidence is found for an electronic decoupling of the phenyl and the dimethyl-amino moiety, resulting in a minimum structure for the ICT state with a twisted geometry. In contrast to previous findings, the structure of this state is, at least in the gas phase, not C(2v) symmetric but distorted towards C(s) symmetry. The distortion coordinate is a pyramidalization of the phenyl carbon atom carrying the dimethyl-amino group. The results from the CC2 model are supported by single-point calculations using more elaborate coupled-cluster models (CCSD, CCSDR(3)) and by CASSCF calculations.  相似文献   

6.
Single-photon excitation spectra from the lowest singlet (1)D(2) level of sulfur atoms were recorded with a tunable vacuum ultraviolet (VUV) radiation source generated by frequency tripling in noble gases. The photolysis of CS(2) at 193 nm was used to produce the singlet S((1)D(2)) sulfur atoms that were then excited to neutral superexcited states with the tunable VUV radiation. These superexcited states undergo autoionization into the first ionization continuum state of S(+)((4)S(3/2) (o))+e(-), which is not directly accessible from the S((1)D(2)) state via an allowed transition. The excitation spectra were recorded by monitoring the S(+) signal in a velocity imaging apparatus while scanning the VUV excitation wavelength. Three new lines were observed in the spectra which have not been previously reported. The full widths at half maximum (FWHM) of each of the observed transitions were determined by fitting the profiles of each absorption resonances with the Fano formula. Autoionization lifetimes tau of these singlet superexcited states were obtained from FWHM using the Uncertainty Principle. Abnormal autoionization lifetimes were found for the 3s(2)3p(3)((2)D(o))nd((1)D(2)) and the 3s(2)3p(3)((2)D(o))ns((1)D(2)) Rydberg series, in which tau(5d) and tau(7s) are shorter than tau(4d) and tau(6s), respectively. This is contrary to the well-known scaling law of tau(n*) proportional, variantn(*3), which should be followed within a series unless there exist perturbations from other series or new channels open up to which some members of the series can decay. Possible perturbations from the nearby triplet series are suspected for causing the broadening of the 5d and 7s levels.  相似文献   

7.
Laser flash photolysis (LFP, 400 nm excitation) of the anti-cancer drug tirapazamine (TPZ) in acetonitrile produces the singlet excited-state S1 with lambda(max) = 544 nm. The lifetime of this state is 130 ps, in good agreement with the reported fluorescence lifetime. The excited state is reduced to the corresponding radical anion by KSCN or KI. The spectrum of the radical anion is in good agreement with previously reported pulse radiolysis studies and time-dependent density functional theory (TD-DFT) calculations. LFP of desoxytirapazamine (dTPZ) also produces the first excited singlet state, S1. The fluorescence quantum yield and lifetime (5.4 ns) of the dTPZ singlet excited state are both much greater than the corresponding values of TPZ. This is explained by DFT calculations that predict that cyclization of TPZ to form an oxaziridine is thermodynamically facile but that cyclization of dTPZ to form an oxadiaziridine is not. Thus, the S1 state of TPZ has a short lifetime and low fluorescence quantum yield due to ready cyclization whereas the cyclization of the S1 state of dTPZ is unimportant and does not limit either the fluorescence quantum yield or the fluorescence lifetime. This conclusion is confirmed by studies of dTPZ', an isomer of dTPZ containing the C=N-O moiety which has a low quantum yield and short fluorescence lifetime similar to that of TPZ.  相似文献   

8.
Low energy, variable angle, electron-impact energy-loss spectra of nitromethane have been obtained. A previously unreported singlet → triplet excitation with maximum intensity at 3.8 eV energy loss is observed and its relevance to the gas phase photochemistry of nitromethane is discussed. An additional weak transition with maximum intensity at 4.45 eV energy loss is tentatively assigned to a symmetry-forbidden transition.  相似文献   

9.
Electronic interactions between the first excited states (S(1)) of carotenoids (Car) of different conjugation lengths (8-11 double bonds) and phthalocyanines (Pc) in different Car-Pc dyad molecules were investigated by two-photon spectroscopy and compared with Car S(1)-chlorophyll (Chl) interactions in photosynthetic light harvesting complexes (LHCs). The observation of Chl/Pc fluorescence after selective two-photon excitation of the Car S(1) state allowed sensitive monitoring of the flow of energy between Car S(1) and Pc or Chl. It is found that two-photon excitation excites to about 80% to 100% exclusively the carotenoid state Car S(1) and that only a small fraction of direct tetrapyrrole two-photon excitation occurs. Amide-linked Car-Pc dyads in tetrahydrofuran demonstrate a molecular gear shift mechanism in that effective Car S(1) → Pc energy transfer is observed in a dyad with 9 double bonds in the carotenoid, whereas in similar dyads with 11 double bonds in the carotenoid, the Pc fluorescence is strongly quenched by Pc → Car S(1) energy transfer. In phenylamino-linked Car-Pc dyads in toluene extremely large electronic interactions between the Car S(1) state and Pc were observed, particularly in the case of a dyad in which the carotenoid contained 10 double bonds. This observation together with previous findings in the same system provides strong evidence for excitonic Car S(1)-Pc Q(y) interactions. Very similar results were observed with photosynthetic LHC II complexes in the past, supporting an important role of such interactions in photosynthetic down-regulation.  相似文献   

10.
The equilibrium structures and physical properties of the X (1)sigma(+) linear electronic states, linear excited singlet and triplet electronic states of hydroboron monoxide (HBO) (A (1)sigma(-), B (1)delta, a (3)sigma(+), and b (3)delta) and boron hydroxide (BOH) (A (1)sigma(+), B (1)Pi, and b (3)Pi), and their bent counterparts (HBO a (3)A('), b (3)A("), A (1)A("), B (1)A(') and BOH X (1)A('), b (3)A('), c (3)A("), A (1)A('), B (1)A('), C (1)A(")) are investigated using excited electronic state ab initio equation-of-motion coupled-cluster (EOM-CC) methods. A new implementation of open-shell EOM-CC including iterative partial triple excitations (EOM-CC3) was tested. Coupled-cluster wave functions with single and double excitations (CCSD), single, double, and iterative partial triple excitations (CC3), and single, double, and full triple excitations (CCSDT) are employed with the correlation-consistent quadruple and quintuple zeta basis sets. The linear HBO X (1)sigma(+) state is predicted to lie 48.3 kcal mol(-1) (2.09 eV) lower in energy than the BOH X (1)sigma(+) linear stationary point at the CCSDT level of theory. The CCSDT BOH barrier to linearity is predicted to lie 3.7 kcal mol(-1) (0.16 eV). With a harmonic zero-point vibrational energy correction, the HBO X (1)sigma(+)-BOH X (1)A(') energy difference is 45.2 kcal mol(-1) (1.96 eV). The lowest triplet excited electronic state of HBO, a (3)A('), has a predicted excitation energy (T(e)) of 115 kcal mol(-1) (4.97 eV) from the HBO ground state minimum, while the lowest-bound BOH excited electronic state, b (3)A('), has a T(e) of 70.2 kcal mol(-1) (3.04 eV) with respect to BOH X (1)A('). The T(e) values predicted for the lowest singlet excited states are A (1)A(")<--X (1)sigma(+)=139 kcal mol(-1) (6.01 eV) for HBO and A (1)A(')<--X (1)A(')=102 kcal mol(-1) (4.42 eV) for BOH. Also for BOH, the triplet vertical transition energies are b (3)A(')<--X (1)A(')=71.4 kcal mol(-1) (3.10 eV) and c (3)A(")<--X (1)A(')=87.2 kcal mol(-1) (3.78 eV).  相似文献   

11.
12.
The excited electronic states of the p-coumaric acid thio-ester chromophore of the Photoactive Yellow Protein (PYP) are characterized in view of identifying the key factors determining the chromophore's isomerisation. These factors include the anionic nature of the chromophore, the presence of sulfur (rather than oxygen or nitrogen) in the ester moiety, and the presence of a hydrogen-bonding environment stabilizing the phenolate moiety. Two twisted stationary S1 structures are identified, corresponding to a twist around the double bond conjugated with the aromatic ring, and the single bond adjacent to the ring, respectively. The latter structure is accessed directly by relaxation from the Franck–Condon (FC) geometry. These structures are shown to entail a substantial polarization effect (increasing charge separation when moving towards the twisted geometry). Further, an inversion of charge character is observed for the double-bond twisted minimum, which can be accounted for by the vicinity of an S1–S0 conical intersection. The S1–S0 gap at the minimum geometries depends in a sensitive fashion on the -carbonyl heteroatom. Based upon these observations for the intrinsic properties of the chromophore, we further address the effect of the Arg52 residue, which acts as a counter-ion in the native protein environment.  相似文献   

13.
The ground and low-lying excited states of TiC are investigated using a CASSCF—externally contracted Cl approach. The calculations yield a 3Σ+ ground state, but the 1Σ+ state is only 780 cm?1 higher and cannot be ruled out. The low-lying states have some triple bond character. The nature of the bonding and origin of the states are discussed.  相似文献   

14.
A series of CAS SCF and multi-reference Cl calculations are used to describe the lowest states of TiN. The bonding in all states is described as a triple bond involving the Ti 3d orbitals. The system has some ionic character as seen from both population analysis and dipole moment. The origins of the excited states are discussed.  相似文献   

15.
Singlet molecular oxygen (a(1)Delta(g)) has been produced and optically detected upon two-photon nonlinear excitation of a sensitizer with a focused laser beam. The experiments were performed using toluene solutions with either a substituted difuranonaphthalene or a substituted distyryl benzene as the sensitizer. The data indicate that the two-photon absorption cross sections of the difuranonaphthalenes are comparatively large and depend significantly on the functional groups attached to the chromophore. The time-resolved 1270 nm phosphorescence signals used to characterize the production of singlet oxygen are limited in much the same way as signals from other two-photon spectroscopic studies (e.g., weak signals that can be masked by scattered radiation). Nevertheless, the two-photon singlet oxygen signals also reflect the unique advantages of this nonlinear optical technique (e.g., depth penetration in the sample afforded by irradiation in a spectral region void of the more dominant one-photon linear transitions and spatial resolution afforded by irradiation with a focused laser beam).  相似文献   

16.
The electronic spectrum of cyclopropene has been studied using multiconfigurational second-order perturbation theory (CASPT2) with extended ANO-type basis sets. The calculation comprises two valence states and the 3s, 3p, 3d members of the Rydberg series converging to the π and σ ionization limits. A total of twenty singlet and twenty triplet excited states have been analyzed. The results confirm the valence nature of the lowest energy singlet-singlet band and yield a conclusive assignment: the first dipole-allowed transition in cyclcopropene is due to absorption to a (σ → π*) state. The (π → π*) (V) state is interleaved among a number of Rydberg states in the most intense band of the system. The remaining spectral bands are due to Rydberg transitions of higher energy. The two lowest singlet-triplet transitions involve the same valence states. The results are in agreement with available experimental data and provide a number of new assignments of the experimental spectra.  相似文献   

17.
18.
19.
20.
Singlet molecular oxygen (a(1)Delta(g)) has been produced and optically detected in time-resolved experiments upon nonlinear two-photon excitation of a photosensitizer dissolved in water. For a given sensitizer, specific functional groups that impart water solubility and that give rise to larger two-photon absorption cross sections are, in many cases, not conducive to the production of singlet oxygen in high yield. This issue involves the competing influence of intramolecular charge transfer that can be pronounced in aqueous systems; more charge transfer in the chromophore facilitates two-photon absorption but decreases the singlet oxygen yield. This phenomenon is examined in a series of porphyrins and vinyl benzenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号