首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The 14A″(4Π) state of N2O+ is found to be the most stable at bent conformations of the nuclei. Ab initio SCF, MC SCF, and MC SCF CI calculations with a double-zeta basis and typical bond-length values for RNN and RNO all yield minimum energy angles near 126°. The energy lowering is such that the total energy of N2O+ (14A″, 126°) is very near that of the lowest O, N2 asymptote, 4S, X 1Σg+. These results are shown to imply that the ionospheric reaction O+ + N2 → NO+ + N, the rate-determining step in the electron removal reaction network, is adiabatic on the potential surface of the 14A″ state.  相似文献   

2.
《Chemical physics letters》1985,120(2):159-162
The numerical procedure of McCullough is used in calculations of Hartree-Fock and MC SCF wavefunctions for ground state of N2. The latter are derived using the complete set of 18 spin and symmetry adapted configurations in the space of MOs that arise from 2p atomic orbitals. An increase in dissociation energy of 0.17 eV is observed when compared to MC SCF calculations in a large basis of Slater-type functions and the same set of configurations. Integrals involving the numerical MC SCF MOs are used in CI calculations in which substitutions involving the 1s and 2s electrons are included. The increase in dissociation energy due to numerical versus basis set valence CI is 0.08 eV. Spectroscopic constants and molecular quadrupole moments are reported.  相似文献   

3.
《Chemical physics》1987,115(3):405-421
A series of MC SCF calculations have been carried out on C2, N2, O2, and F2 with the goal of obtaining compact wavefunctions which recover a significant fraction of the electron correlation effects important for bond dissociation. The active orbital space is varied in size, with the largest spaces including the molecular orbitals derived from 2s, 2p, 3s, 3p and 4p atomic orbitals. Several basis sets ranging in size from 5s3p to 5s4p2d1f are investigated to determine the flexibility in the basis set needed with various choices of the active orbital space. The best extended-valence MC SCF (EVMC) dissociation energies are 0.2–0.5 eV less than the experimental values, indicating that further enlargement of the active orbital space is necessary to achieve 0.1 eV accuracy in the computed dissociation energies. The EVMC calculations reveal that, for the calculation of the dissociation energies, inclusion of non-valence orbitals is much more important for O2 and F2 than for C2 and N2. The EVMC results are compared with the predictions of full fourth-order perturbation theory, coupled cluster theory, and with the best available CI calculations.  相似文献   

4.
A method is proposed to determine the valence type vacant orbitals, which are suitable for CI calculations and for the initial guess orbitals in MC SCF calculations. The method was applied to calculate the ionization energies of series of molecules and to draw the potential energy curves of various states of N2 and N+2.  相似文献   

5.
It is shown that, for O2, in a MC SCF determination of the core ionization potentials employing the full Molecular point group, very few (N-1)-particle configurations are required in order to account for the symmetry breaking in the corresponding Hartree-Fock calculations.  相似文献   

6.
7.
The ground-state potential curve for F2 has been obtained using large-scale MC SCF and CI methods. MC SCF curves were obtained with the CAS SCF method using a variety of sets of active orbitals. The main conclusion from the CAS SCF calculations is that the 2πu orbital is important. CI curves were obtained using the contracted CI method. The largest calculations contained 312000 configurations proper spin and space (d2h) symmetry. The main conclusions from the CI calculations are that the configuration XXX are important, otherwise errors in De of 0.3 eV and in re of 0.02 Å are found. The remaining errors at the CI level are 0.08 eV for De, 0.005 Å for re and less than 10 cm?1 for the lowest vibrational levels.  相似文献   

8.
The electronic structure of the low-lying valence states of the polyatomic free radical methylene (CH2) is investigated at two different geometries using multiconfigurational self-consistent field (MC SCF) and multiconfigurational random phase approximation (MC TDHF MC RPA) techniques. Oscillator strengths and polarizabilities of CH2 are also examined with the MC TDHF MC RPA.  相似文献   

9.
《Chemical physics》1987,112(3):339-347
Two schemes for the definition of the valence space from an extended basis are proposed and tested for the calculation of ionic states in N2, C2N2 and H2NN. Good results are obtained with a projection scheme, leading to a 2h-1v model reproducing the essential features of the full basis 2h-1p results. Notably excellent agreement with experiment is obtained for the main ionization potentials in N2 and C2N2. Unsatisfactory results are instead given by a simple extension of the minimal basis set SCF space, indicating the importance of employing accurate occupied orbitals as a starting point.  相似文献   

10.
Ab initio SCF calculations at the HF/3-21G level and semi-empirical MNDO calculations have been used to locate the stationary points on the CF2N2 energy surface. Perfluorodiazomethane is predicted to be most stable isomer, but perfluorodiazirine is predicted to lie only ca 41 kJ higher in energy at the SCF level. There are significant differences between the ab initio and MNDO results for the ordering of some of the isomers. Frequency calculations give results in good agreement with the limited experimental data on these molecules.  相似文献   

11.
The screening function Φ [ = Vee(R) - Vee(∞)], a key quantity in the theory of isoelectronic molecules, has been given an accurate analytical representation for a large number of states of the species Na2, Na2+ Li2 and Li2+. The election-electron repulsion Vee at various internuclear distances has been obtained from high-quality MC SCF/SCF wavefunctions.  相似文献   

12.
The Auger energies of the L(S2p)-MM transitions of H2S have been computed using MC SCF methods. The results are sufficiently accurate to assign the experimental spectrum and indicate large relaxation as well as large single-triplet splitting for low energy transitions.  相似文献   

13.
The confonners of primary ethylene ozonide have been studied by ab initio gradient and MC SCF calculations. At the MC SCF level they are more spread in energy than in SCF calculations. The planar conformer, carbon-carbon half chair and the oxygen envelope are much higher m energy than the other conformers. The MC SCF activation energy for cyclo-addition of ozone and ethylene is 91–99 kJmole.  相似文献   

14.
The results of several MC SCF calculations on CH4, C2H4 and C2H6 with minimun bases of Slater type AO's are reported. The computing method is a quadratically convergent process. Better final energies are obtained if localized MO's are used.  相似文献   

15.
《Chemical physics letters》1985,115(3):259-267
A new second-order optimisation procedure for general MC SCF wavefunctions is described. The method shows greatly improved convergence as compared to previous methods. Using a determinant-based direct CI procedure which avoids the construction of a formula tape, very long complete active space (CAS SCF) wavefunctions can be handled. Energy averages of several states can also be optimised. Sample calculations for CH2, FeO, and the vinoxy radical CH2CHO with up to 178916 configurations are presented.  相似文献   

16.
Anab initio study of the electronic structure of several 22-electrons molecules is presented. The equilibrium geometries of their ground state are calculated at the SCF level using the 6–31G basis set and are found to be in good agreement with the experimental geometries. The dissociation process of these molecules leading to the isoelectronic products CO or N2 on the one hand and BH3, CH2, NH and O on the other hand is studied. The least-energy dissociation paths of the ground states determined at the SCF level are compared on the basis of electron density interactions. The dissociation energies corresponding to the two lowest dissociation channels are calculated. In these calculations, the correlation energy is taken into account using a non-variational method developed previously. The calculated values of dissociation energies are in good agreement with the existing experimental values. The results permit to predict values for HNCO, BH3CO and CH2N2 and to confirm the instability of BH3N2.Aspirant du Fonds National Belge de la Recherche Scientifique.  相似文献   

17.
Ab initio SCF calculations of the equilibrium geometries have been carried out on nine possible isomers of MH2N2, where M = C or Si, and compared with the results of MNDO calculations. The results for the carbon compounds are in good agreement with available experimental data, but in the case of the silicon compounds, the molecules are predicted to be unstable with respect to decomposition to SiH2 and N2. The inclusion of electron correlation at the MP3 level does not alter the order of the relative stabilities, although the importance of the correlation contribution varies substantially between the different isomers.  相似文献   

18.
In this paper, theoretical methods developed in III are applied in calculating polarisabilities, polarisability gradients and field-induced shifts, by the finite-field method. Values of dipole moment gradients and higher-order moments, calculated from the unperturbed wavefunctions, are also reported. Results for N2, CO, CN?, HCN and HNC have been obtained at the SCF level; some CI results for the N2 polarisability components and moments and for the dipole moment gradients of HCN are also given. The calculated polarisability gradients and dipole moment gradients have been used to estimate the Raman scattering intensities and depolarisation ratios and the IR absorption intensities. Model calculations of field-induced shifts in bond length, vibrational levels, spectroscopic constants, force constants and dipole moment gradient are reported for N2 and CO.The discrepancy between the SCF and experimental bond dipole moment gradients for HCN, previously noted in the literature, has been re-examined and resolved by our CI results.  相似文献   

19.
《Chemical physics letters》1985,117(5):400-408
The interaction energies of the van der Waals dimers H2O-H2O, Cl2-HF, ClF-HF and N2O-HF have been calculated for a range of geometries using ab initio SCF techniques. The SCF binding energies have been decomposed into electrostatic, exchange, polarisation and charge-transfer contributions and the intermolecular angles optimised with respect to various combinations of the above components. The effects of exchange, polarisation and charge transfer on the shape of a given dimer are found approximately to cancel, so that in each case a purely electrostatic model is capable of predicting intermolecular angles that agree well with those of a full SCF treatment, as well as with experiment. These findings are consistent with the proposals and earlier calculations of Buckingham and Fowler.  相似文献   

20.
Ab initio calculations were performed for the three lowest lying states of HO+2. The ground state was found to be a bend 3A″ state. The first excited 1A′ state cannot appropriately be described by a single determinant, therefore a MC SCF calculation was employed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号