首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity coefficients of K3[Co(CN)6], Mg3[Co(CN)6]2, and Ca3[Co(CN)6]2,are examined. The results highlight close similarity with the correspondinghexacyanoferrate (III) salts. On dilution, K3[Co(CN)6], like K3[Fe(CN)6], approachesthe limiting law from the upper side, while Mg3[Co(CN)6]2 and Ca3[Co(CN)6]2tend to the limiting law from the opposite side, like Mg3[Fe(CN)6]2,Ca3[Fe(CN)6]2, Sr3[Fe(CN)6]2, and Ba3[Fe(CN)6]2. Both kinds of behavior agreewith theory for a model of hard spheres bearing electric charges +1 and –3 or+2 and –3, respectively. The paramater values of the Pitzer equation for activityand osmotic coefficients are reported.  相似文献   

2.
Activity coefficients of [Co(en)3](NO3)3 and [Co(en)3](ClO4)3, to be compared with [Co(en)3]Cl3 and the corresponding lanthanum salts previously studied, are determined. [Co(en)3]Cl3 data are revised. Ion interaction strengths vary in the same order found for La3+, i.e., as if nitrate and perchlorate ions were of smaller and larger size, respectively, than chloride ions; however, the differences are much smaller than in lanthanum salts. Tris(ethylenediamine)cobalt III and lanthanum nitrate, chloride, and perchlorate—like the corresponding hexacyanoferrate(III) and hexacyanocobaltate(III) salts, but contrary to sulfate salts—behave as if [Co(en)3]3+ were smaller in size than La3+. In the dilute regions, [Co(en)3](NO3)3 displays negative deviations from the limiting slope, a kind of behavior typical for 2:2, 2:3, 3:2, and 3:3 electrolytes, but unnoticed earlier for 3:1 or 1:3 electrolytes. Pitzer's equation parameters able to provide accurate activity and osmotic coefficients for [Co(en)3](NO3)3, [Co(en)3](ClO4)3, and, revised, [Co(en)3]Cl3 are reported.  相似文献   

3.
Activity coefficients of K2C2O4 and Na2ds, ds2– = 1,5-naphthalenedisulfonate anion, which were previously unavailable, are examined at 25.0°C using liquid membrane cells. The results for both salts are approximated satisfactorily by the primitive model in spite of the fact that ds2–, a planar ion with electric charges distant from one another, does not resemble a charged hard sphere. Data are compared with those of K2SO4 and bivalent metal perchlorates. The Pitzer ion-interaction parameters are reported.  相似文献   

4.
The activity coefficients of ZnSO4, MgSO4, CaSO4, and SrSO4 are measured by means of cells with ion-exchange liquid membranes similar to those described in the previous papers of this series. Negative deviations from the limiting law are observed in the dilute region. These deviations are, for ZnSO4, appreciably more important than recent literature has indicated, and the corresponding activity coefficients need to be corrected by about 12%. Pitzer’s theory best-fit coefficients have accordingly been recalculated. The osmotic coefficients are also derived. Accessory information on the hydration state for zinc, magnesium, and sulfate ions, is presented.  相似文献   

5.
A new electrochemical cell is described, in which two permselective liquid membranes, one anionic the other cationic, are interposed between the subsidiary electrodes and the solution of the electrolyte under examination By means of this kind of cell it is possible to measure activity coefficients of salts of cations and anions for which reversible electrodes are not available, with great accuracy even at high dilutions never accessible before (down to ≊10−4 mol-dm−3). The cell performance has been tested by measuring the activity coefficients of KCl for which accurate data are available in literature.  相似文献   

6.
The activity coefficients of LaCl3, K3Fe(CN)6, and LaFe(CN)6 were measured down to about 1×10–4, 3×10–5, and 2×10–5 mol-kg–1 respectively, by means of cells with ion-exchange liquid membranes. In the diluted region, the trend of lanthanum chloride agrees with the Debye-Huckel theory and corroborates earlier findings in the literature relevant to more concentrated solutions, with minor systematic corrections of the ± values. K3Fe(CN)6 attains (rather than tends to attain) the Debye-Huckel limiting slope at1×10–3 mol-kg–1, and lanthanum ferricyanide in the diluted region shows negative deviations from the limiting law, similar to the ones predicted for large-sized, highly-charged ions in the diluted region by Bjerrum's, IPBE, and Mayer's theories. The behavior of LaCl3 in the concentrated solutions proves that lanthanum ion drags along with it into the membrane many molecules of water which were then found to be twelve. Pitzer's theory best-fit coefficients that meet the experimental curves to be reproduced satisfactorily are reported.  相似文献   

7.
The activity coefficients of Co(en)3Cl3 and K2SO4 were measured by means of a cell with ion-exchange liquid membranes following the method described in paper I. The results prove that this method is even more valuable with multicharged salts than with 1-1 electrolytes. The values obtained are precise and reliable down to dilution limits never before accessible, e.g., 4×10–5 mol-kg–1 in Co(en)3Cl3. High dilution levels are of particular importance when dealing with highly charged electrolytes since the trend at higher concentrations often leads to errors both in extrapolation to infinite dilution and in the absolute activity coefficients. As an application, the activity coefficients of [Co(en)3]2(SO4)3-suspected to be wrongly evaluated in past literature-were measured, and their values at low concentrations were actually lower than those quoted before.  相似文献   

8.
Osmotic coefficients to high ionic strengths are reported for five of the binary mixtures formed from NaCl, Na2SO4, CuCl2, and CuSO4; the sixth system studied, NaCl–Na2SO4, is one studied by Wu, Rush, and Scatchard. The equations recently developed by Pitzer are used successfully in the interpretation of the experimental results. Revised values are given for the activity and osmotic coefficients for pure CuSO4 and CuCl2 solutions.  相似文献   

9.
Isopiestic vapor pressure comparison measurements were conducted with the three-component system HClO4+UO2(ClO4)2+H2O in the concentration range between I=0.05 and 1.9m. Analysis of the mixture composition and concentration dependence of the osmotic coefficients with the Scatchard neutral-electrolyte and ion-component methods and with the Pitzer ioncomponent methods gave equally satisfactory results. Prediction of the observed osmotic coefficients by two-component approximations was satisfactory, and the data agreed well with values estimated with a model based on the osmolal fraction. A fair concordance was also found between predicted solute activity coefficients from simple models and values derived from complete treatments which included interaction terms.  相似文献   

10.
We have used a flow calorimeter and a flow densimeter for measurements leading to apparent molar heat capacities and apparent molar volumes of six 21 electrolytes in aqueous solution at 25°C. Results of these measurements have been used to derive apparent molar heat capacities and volumes at infinite dilution for all six electrolytes: CaCl2, Cd(NO3)2, CoCl2, Cu(ClO4)2, Mg(ClO4)2, and NiCl2.  相似文献   

11.
We have used a flow calorimeter and a flow densimeter for measurements leading to apparent molar heat capacities and apparent molar volumes of aqueous solutions of Cd(ClO4)2, Ca(ClO4)2, Co(ClO4)2, Mn(ClO4)2, Ni(ClO4)2, and Zn(ClO4)2. The resulting apparent molar quantities have been extrapolated to infinite dilution to obtain the corresponding standardstate apparent and partial molar heat capacities and volumes. These latter values have been used for calculation of conventional ionic heat capacities and volumes.  相似文献   

12.
Ternary aqueous solutions of MgSO4 and K2SO4 have been studied by the hygrometric method at 25°C. The relative humidity of this system is measured at total molalities from 0.35 mol-kg–1 to about saturation for three ionic-strength fractions (y = 0.25, 0.50, and 0.80 of MgSO4. The data allow calculation of water activities and osmotic coefficients. From these measurements, the Pitzer ionic mixing parameters are determined and used to predict the solute activity coefficients in the mixture. The results are used to calculate the excess Gibbs energy at total molalities for ionic-strength fraction y.  相似文献   

13.
Borosulfates are compounds analogous to silicates, with heteropolyanionic subunits of vertex-linked (SO4)- and (BO4)-tetrahedra. In contrast to the immense structural diversity of silicates, the number of borosulfates is yet very limited and the extent of their properties is still unknown. This is particularly true for representatives with phyllosilicate and tectosilicate analogue anionic substructures. Herein, we present Ni[B2(SO4)4] and Co[B2(SO4)4], two new borosulfates with phyllosilicate analogue topology. While the anionic subunits of both structures are homeotypic, the positions of the charge compensating cations differ significantly: NiII is located between the borosulfate layers, while CoII—in contrast—is embedded within the layer. Detailed analysis of these two structures based on single-crystal X-ray diffraction, magnetochemical investigations, X-ray photoelectron spectroscopy, and quantum chemical calculations, unveiled the reasons for this finding. By in silico comparison with other divalent borosulfates, we uncovered systematic trends for phyllosilicate analogues leading to the prediction of new species.  相似文献   

14.
This study measures the osmotic coefficients of {xH2SO4 + (1−x)Fe2(SO4)3}(aq) solutions at 298.15 and 323.15 K that have ionic strengths as great as 19.3 mol,kg−1, using the isopiestic method. Experiments utilized both aqueous NaCl and H2SO4 as reference solutions. Equilibrium values of the osmotic coefficient obtained using the two different reference solutions were in satisfactory internal agreement. The solutions follow generally the Zdanovskii empirical linear relationship and yield values of a w for the Fe2(SO4)3–H2O binary system at 298.15 K that are in good agreement with recent work and are consistent with other M2(SO4)3–H2O binary systems.  相似文献   

15.
Lanthanum ferricyanide is so far the only 3–3 electrolyte whose activity coefficients have been studied carefully; however, the results have been acknowledged to be inconsistent below 1×10–4 mol-kg–1. New measurements have been made with an improved cell, proving that the wrong trend was due to chemical interference in the original cell. The new cell makes it possible to reach dilution levels of the order of 4×10–6 mol-kg–1. The salt behaves radically unlike Debye-Hückel's predictions, but agrees with other more refined treatments of the hard sphere models without needing any further hypotheses, such as e.g., association. The revised values of the activity coefficients are reported.  相似文献   

16.
合成了3个超分子化合物[M(4,4'-bipy)2(H2O)4]·(4,4'-bipy)2·(3,5-diaba)2·8H2O(M=Co(1),Ni(2),Cd(3);4,4'-bipy=4,4'-联吡啶;3,5-diaba=3,5-二氨基苯甲酸阴离子),用红外光谱、元素分析及X-射线单晶衍射进行了表征。3个化合物的晶体都属于单斜晶系,空间群为P2/c。晶体学参数:化合物1:a=0.9389(2)nm,b=0.7751(1)nm,c=3.9284(6)nm,β=90.14(2)°,V=2.85880(69)nm3,Z=4,Dc=1.397g·cm-3,F(000)=1266,μ=0.380mm-1,R1=0.0349,wR2=0.0829;化合物2:a=0.9383(2)nm,b=0.7753(1)nm,c=3.9218(6)nm,β=90.09(1)°,V=2.85280(68)nm3,Z=2,Dc=1.399g·cm-3,F(000)=1268,μ=0.420mm-1,R1=0.0366,wR2=0.0805;化合物3:a=0.94091(13)nm,b=0.77885(11)nm,c=3.9712(5)nm,β=90.10°,V=2.9102(7)nm3,Z=2,Dc=1.433g·cm-3,F(000)=1308,μ=0.454mm-1,R1=0.0468,wR2=0.0964。3,5-diaba未参与配位,在配位阳离子[M(4,4'-bipy)2(H2O)4]2 中,金属离子M髤与来自2个4,4'-bipy的2个氮原子和4个水分子的氧原子配位,呈八面体的几何构型。分子中还存在未配位的4,4'-bipy。通过配位阳离子、游离4,4'-bipy及未配位的3,5-diaba间的丰富氢键,构建成具有三维结构的超分子化合物。  相似文献   

17.
The relative mean activity coefficients of the M3[Fe(CN)6]2 salts, M=Mg, Ca, Sr, Ba, are measured down to about 5×10–6 mol-kg–1 using the liquid membrane cell method. In the dilute region these salts display negative instead of positive deviations from the limiting law, contrary to Debye-Hückel's theory predictions. An indirect method based on auxiliary emf measurements in MCl2, K3Fe(CN)6 and KCl, rather than a theory-assisted direct extrapolation to zero of the relative activity coefficients, is used to identify the actual values of the activity coefficients. The data are compared with Mayer's theory, ion-pair theory and numerical integration of the Poisson-Boltzmann equation. Best-fit coefficients of Pitzer's equation which meet the activity coefficients of the M3[Fe(CN)6]2 salts to be reproduced, are reported.  相似文献   

18.
The Curie (Neel) temperature is successfully determined by means of a simple magnetic device attached to the Q Derivatograph (MOM, Hungary), which is widely used in many laboratories. This possibility is demonstrated by a study of ferrite materials with general formula MxZn1?xFe2O4 (M=Cu, Co and Ni;x=0.0; 0.2; 0.4; 0.5; 0.6; 0.8; 1.0). X-ray phase analysis, Mössbauer spectroscopy and microscopic examinations revealed that the obtained ferrites are monophase samples. The mixed ferrites possess more strongly expressed magnetic properties than those of the individual ferrites; the maximum magnetic interaction in these ferrites is observed at different zinc contents.  相似文献   

19.
20.
Isopiestic vapor-pressure measurements were made for Li2SO4(aq) from 0.1069 to 2.8190 mol?kg?1 at 298.15 K, and from 0.1148 to 2.7969 mol?kg?1 at 323.15 K, with NaCl(aq) as the reference standard. Published thermodynamic data for this system were reviewed, recalculated for consistency, and critically assessed. The present results and the more reliable published results were used to evaluate the parameters of an extended version of Pitzer’s ion-interaction model with an ionic-strength dependent third-virial coefficient, as well as those of the standard Pitzer model, for the osmotic and activity coefficients at both temperatures. Published enthalpies of dilution at 298.15 K were also analyzed to yield the parameters of the ion-interaction models for the relative apparent molar enthalpies of dilution. The resulting models at 298.15 K are valid to the saturated solution molality of the thermodynamically stable phase Li2SO4?H2O(cr). Solubilities of Li2SO4?H2O(cr) at 298.15 K were assessed and the selected value of m(sat.)=3.13±0.04 mol?kg?1 was used to evaluate the thermodynamic solubility product K s(Li2SO4?H2O, cr, 298.15 K) = (2.62±0.19) and a CODATA-compatible standard molar Gibbs energy of formation Δf G m o (Li2SO4?H2O, cr, 298.15 K) = ?(1564.6±0.5) kJ?mol?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号