首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate low degree rational cohomology groups of smooth compactifications of moduli spaces of curves with level structures. In particular, we determine Hk([`(S)]g, \mathbb Q){H^k\left({\bar S}_{g}, {\mathbb Q}\right)} for g ≥ 2 and k ≤ 3, where [`(S)]g{{\bar S}_{g}} denotes the moduli space of spin curves of genus g.  相似文献   

2.
We study complex analytic properties of the augmented Teichmüller spaces [`(T)]g,n{\overline{\mathcal{T}}_{g,n}} obtained by adding to the classical Teichmüller spaces Tg,n{\mathcal{T}_{g,n}} points corresponding to Riemann surfaces with nodal singularities. Unlike Tg,n{\mathcal{T}_{g,n}}, the space [`(T)]g,n{\overline{\mathcal{T}}_{g,n}} is not a complex manifold (it is not even locally compact). We prove, however, that the quotient of the augmented Teichmüller space by any finite index subgroup of the Teichmüller modular group has a canonical structure of a complex orbifold. Using this structure, we construct natural maps from [`(T)]{\overline{\mathcal{T}}} to stacks of admissible coverings of stable Riemann surfaces. This result is important for understanding the cup-product in stringy orbifold cohomology. We also establish some new technical results from the general theory of orbifolds which may be of independent interest.  相似文献   

3.
We study algebraic (Artin) stacks over [`(M)]g{\overline{\mathcal M}_{g}} giving a functorial way of compactifying the relative degree d Picard variety for families of stable curves. We also describe for every d the locus of genus g stable curves over which we get Deligne–Mumford stacks strongly representable over[`(M)]g{\overline{\mathcal M}_{g}} .  相似文献   

4.
We study the singular homology (with field coefficients) of the moduli stack [`(\mathfrakM)]g, n{\overline{\mathfrak{M}}_{g, n}} of stable n-pointed complex curves of genus g. Each irreducible boundary component of [`(\mathfrakM)]g, n{\overline{\mathfrak{M}}_{g, n}} determines via the Pontrjagin–Thom construction a map from [`(\mathfrakM)]g, n{\overline{\mathfrak{M}}_{g, n}} to a certain infinite loop space whose homology is well understood. We show that these maps are surjective on homology in a range of degrees proportional to the genus. This detects many new torsion classes in the homology of [`(\mathfrakM)]g, n{\overline{\mathfrak{M}}_{g, n}}.  相似文献   

5.
Let k be a field of characteristic 0 and let [`(k)] \bar{k} be a fixed algebraic closure of k. Let X be a smooth geometrically integral k-variety; we set [`(X)] = X ×k[`(k)] \bar{X} = X{ \times_k}\bar{k} and denote by [`(X)] \bar{X} . In [BvH2] we defined the extended Picard complex of X as the complex of Gal( [`(k)]
/ k ) Gal\left( {{{{\bar{k}}} \left/ {k} \right.}} \right) -modules
\textDiv( [`(X)] ) {\text{Div}}\left( {\bar{X}} \right) is in degree 1. We computed the isomorphism class of \textUPic( [`(G)] ) {\text{UPic}}\left( {\bar{G}} \right) in the derived category of Galois modules for a connected linear k-group G.  相似文献   

6.
It has been known since the 1970s that the Torelli map M  g →A  g , associating to a smooth curve its Jacobian, extends to a regular map from the Deligne–Mumford compactification [`(\operatorname M)]g\overline {\operatorname {M}}_{g} to the 2nd Voronoi compactification [`(\operatorname A)]gvor\overline {\operatorname {A}}_{g}^{\mathrm {vor}}. We prove that the extended Torelli map to the perfect cone (1st Voronoi) compactification [`(\operatorname A)]gperf\overline {\operatorname {A}}_{g}^{\mathrm {perf}} is also regular, and moreover [`(\operatorname A)]gvor\overline {\operatorname {A}}_{g}^{\mathrm {vor}} and [`(\operatorname A)]gperf\overline {\operatorname {A}}_{g}^{\mathrm {perf}} share a common Zariski open neighborhood of the image of [`(\operatorname M)]g\overline {\operatorname {M}}_{g}. We also show that the map to the Igusa monoidal transform (central cone compactification) is not regular for g≥9; this disproves a 1973 conjecture of Namikawa.  相似文献   

7.
Let \mathbb Dn:={z=(z1,?, zn) ? \mathbb Cn:|zj| < 1,   j=1,?, n}{\mathbb {D}^n:=\{z=(z_1,\ldots, z_n)\in \mathbb {C}^n:|z_j| < 1, \;j=1,\ldots, n\}}, and let [`(\mathbbD)]n{\overline{\mathbb{D}}^n} denote its closure in \mathbb Cn{\mathbb {C}^n}. Consider the ring
Cr([`(\mathbbD)]n;\mathbb C) = {f:[`(\mathbbD)]n? \mathbb C:f   is   continuous   and  f(z)=[`(f([`(z)]))]   (z ? [`(\mathbbD)]n)}C_{\rm r}(\overline{\mathbb{D}}^n;\mathbb {C}) =\left\{f: \overline{\mathbb{D}}^n\rightarrow \mathbb {C}:f \,\, {\rm is \,\, continuous \,\, and}\,\, f(z)=\overline{f(\overline{z})} \;(z\in \overline{\mathbb{D}}^n)\right\}  相似文献   

8.
Let W í \Bbb C\Omega \subseteq {\Bbb C} be a simply connected domain in \Bbb C{\Bbb C} , such that {¥} è[ \Bbb C \[`(W)]]\{\infty\} \cup [ {\Bbb C} \setminus \bar{\Omega}] is connected. If g is holomorphic in Ω and every derivative of g extends continuously on [`(W)]\bar{\Omega} , then we write gA (Ω). For gA (Ω) and z ? [`(W)]\zeta \in \bar{\Omega} we denote SN (g,z)(z) = ?Nl=0\fracg(l) (z)l ! (z-z)lS_N (g,\zeta )(z)= \sum^{N}_{l=0}\frac{g^{(l)} (\zeta )}{l !} (z-\zeta )^l . We prove the existence of a function fA(Ω), such that the following hold:
i)  There exists a strictly increasing sequence μn ∈ {0, 1, 2, …}, n = 1, 2, …, such that, for every pair of compact sets Γ, Δ ⊂ [`(W)]\bar{\Omega} and every l ∈ {0, 1, 2, …} we have supz ? G supw ? D \frac?l?wl Smnf,z) (w)-f(l)(w) ? 0,    as n ? + ¥    and\sup_{\zeta \in \Gamma} \sup_{w \in \Delta} \frac{\partial^l}{\partial w^l} S_{\mu_ n} (\,f,\zeta) (w)-f^{(l)}(w) \rightarrow 0, \hskip 7.8pt {\rm as}\,n \rightarrow + \infty \quad {\rm and}
ii)  For every compact set K ì \Bbb CK \subset {\Bbb C} with K?[`(W)] = ?K\cap \bar{\Omega} =\emptyset and Kc connected and every function h: K? \Bbb Ch: K\rightarrow {\Bbb C} continuous on K and holomorphic in K0, there exists a subsequence { m¢n }n=1\{ \mu^\prime _n \}^{\infty}_{n=1} of {mn }n=1\{\mu_n \}^{\infty}_{n=1} , such that, for every compact set L ì [`(W)]L \subset \bar{\Omega} we have supz ? L supz ? K Sm¢nf,z)(z)-h(z) ? 0,    as  n? + ¥.\sup_{\zeta \in L} \sup_{z\in K} S_{\mu^\prime _n} (\,f,\zeta )(z)-h(z) \rightarrow 0, \hskip 7.8pt {\rm as} \, n\rightarrow + \infty .
  相似文献   

9.
We study certain groupoids generating Abelian, strongly Abelian, and Hamiltonian varieties. An algebra is Abelian if t( a,[`(c)] ) = t( a,[`(d)] ) ? t( b,[`(c)] ) = t( b,[`(d)] ) t\left( {a,\bar{c}} \right) = t\left( {a,\bar{d}} \right) \to t\left( {b,\bar{c}} \right) = t\left( {b,\bar{d}} \right) for any polynomial operation on the algebra and for all elements a, b, [`(c)] \bar{c} , [`(d)] \bar{d} . An algebra is strongly Abelian if t( a,[`(c)] ) = t( b,[`(d)] ) ? t( e,[`(c)] ) = t( e,[`(d)] ) t\left( {a,\bar{c}} \right) = t\left( {b,\bar{d}} \right) \to t\left( {e,\bar{c}} \right) = t\left( {e,\bar{d}} \right) for any polynomial operation on the algebra and for arbitrary elements a, b, e, [`(c)] \bar{c} , [`(d)] \bar{d} . An algebra is Hamiltonian if any subalgebra of the algebra is a congruence class. A variety is Abelian (strongly Abelian, Hamiltonian) if all algebras in a respective class are Abelian (strongly Abelian, Hamiltonian). We describe semigroups, groupoids with unity, and quasigroups generating Abelian, strongly Abelian, and Hamiltonian varieties.  相似文献   

10.
We consider functions of the form f1[`(g)]1+h{f_1\bar g_1+h} in the range of the Berezin transform B, where f 1 and g 1 are holomorphic on the unit disk \mathbb D{\mathbb D}, and h is either harmonic or of the form f2[`(g)]2{f_2\bar g_2} for some holomorphic functions f 2 and g 2 on \mathbb D{\mathbb D}. First, by using the Mellin transform, we complement Ahern’s Theorem (Ahern in J Funct Anal 215:206–216, 2004) by proving that if u ? L1{u\in L^1} and B(u) is harmonic, then u is harmonic. Secondly, we extend Ahern’s Theorem when h is harmonic, and give very precise relations between f 1 and f 2, g 1 and g 2 when h=f2[`(g)]2{h=f_2\bar g_2} and g 2(z) = z n with n ≥ 1. Finally, some applications of our results to the theory of Toeplitz operators are discussed.  相似文献   

11.
Pointwise estimates of the deviation T n,A,B f(⋅)−f(⋅) in terms of moduli of continuity [`(w)]·f\bar{w}_{\cdot}f and w f are proved. Analog results on norm approximation with remarks and corollaries are also given. In the results essentially weaker conditions than those in [2, Theorem 1, p. 437] are used.  相似文献   

12.
For a harmonic map f from a Riemann surface into a complex Grassmann manifold, Chern and Wolfson [4] constructed new harmonic maps ?f\partial\!f and [`(?)]f\bar{\partial}\!f through the fundamental collineations ?\partial and [`(?)]\bar{\partial} respectively. In this paper, we study the linearly full conformal minimal immersions from S 2 into complex Grassmannians G(2,n), according to the relationships between the images of ?f\partial\!f and [`(?)]f\bar{\partial}\!f. We obtain various pinching theorems and existence theorems about the Gaussian curvature, K?hler angle associated to the given minimal immersions, and characterize some immersions under special conditions. Some examples are given to show that the hypotheses in our theorems are reasonable.  相似文献   

13.
It is shown that if a point x 0 ∊ ℝ n , n ≥ 3, is an essential isolated singularity of an open discrete Q-mapping f : D → [`(\mathbb Rn)] \overline {\mathbb {R}^n} , B f is the set of branch points of f in D; and a point z 0 ∊ [`(\mathbb Rn)] \overline {\mathbb {R}^n} is an asymptotic limit of f at the point x 0; then, for any neighborhood U containing the point x 0; the point z 0 ∊ [`(f( Bf ?U ))] \overline {f\left( {B_f \cap U} \right)} provided that the function Q has either a finite mean oscillation at the point x 0 or a logarithmic singularity whose order does not exceed n − 1: Moreover, for n ≥ 2; under the indicated conditions imposed on the function Q; every point of the set [`(\mathbb Rn)] \overline {\mathbb {R}^n} \ f(D) is an asymptotic limit of f at the point x 0. For n ≥ 3, the following relation is true: [`(\mathbbRn )] \f( D ) ì [`(f Bf )] \overline {\mathbb{R}^n } \backslash f\left( D \right) \subset \overline {f\,B_f } . In addition, if ¥ ? f( D ) \infty \notin f\left( D \right) , then the set f B f is infinite and x0 ? [`(Bf )] x_0 \in \overline {B_f } .  相似文献   

14.
Let a\alpha and b\beta be bounded measurable functions on the unit circle T. The singular integral operator Sa, bS_{\alpha ,\,\beta } is defined by Sa, b f = aPf + bQf(f ? L2 (T))S_{\alpha ,\,\beta } f = \alpha Pf + \beta Qf(f \in L^2 (T)) where P is an analytic projection and Q is a co-analytic projection. In the previous paper, the norm of Sa, bS_{\alpha ,\,\beta } was calculated in general, using a,b\alpha ,\beta and a[`(b)] + H\alpha \bar {\beta } + H^\infty where HH^\infty is a Hardy space in L (T).L^\infty (T). In this paper, the essential norm ||Sa, b ||e\Vert S_{\alpha ,\,\beta } \Vert _e of Sa, bS_{\alpha ,\,\beta } is calculated in general, using a[`(b)] + H + C\alpha \bar {\beta } + H^\infty + C where C is a set of all continuous functions on T. Hence if a[`(b)]\alpha \bar {\beta } is in H + CH^\infty + C then ||Sa, b ||e = max(||a|| , ||b|| ).\Vert S_{\alpha ,\,\beta } \Vert _e = \max (\Vert \alpha \Vert _\infty , \Vert \beta \Vert _\infty ). This gives a known result when a, b\alpha , \beta are in C.  相似文献   

15.
Using analytical tools, we prove that for any simple graph G on n vertices and its complement [`(G)]\bar G the inequality $\mu \left( G \right) + \mu \left( {\bar G} \right) \leqslant \tfrac{4} {3}n - 1$\mu \left( G \right) + \mu \left( {\bar G} \right) \leqslant \tfrac{4} {3}n - 1 holds, where μ(G) and m( [`(G)] )\mu \left( {\bar G} \right) denote the greatest eigenvalue of adjacency matrix of the graphs G and [`(G)]\bar G respectively.  相似文献   

16.
Let n ≥ 2 be a fixed integer, let q and c be two integers with q > n and (n, q) = (c, q) = 1. For every positive integer a which is coprime with q we denote by [`(a)]c{\overline{a}_{c}} the unique integer satisfying 1 £ [`(a)]cq{1\leq\overline{a}_{c} \leq{q}} and a[`(a)]c o c(mod q){a\overline{a}_{c} \equiv{c}({\rm mod}\, q)}. Put
L(q)={a ? Z+: (a,q)=1, n \not| a+[`(a)]c }.L(q)=\{a\in{Z^{+}}: (a,q)=1, n {\not\hskip0.1mm|} a+\overline{a}_{c} \}.  相似文献   

17.
Let X \hookrightarrow[`(X)]{X \hookrightarrow \overline{X}} be an open immersion of smooth varieties over a field of characteristic p > 0 such that the complement is a simple normal crossing divisor and [`(Z)] í Z í [`(X)]{\overline{Z}\subseteq Z \subseteq \overline{X}} closed subschemes of codimension at least 2. In this paper, we prove that the canonical restriction functor between the categories of overconvergent F-isocrystals F-Isocf(X,[`(X)]) ? F-Isocf(X\Z,[`(X)]\[`(Z)]){F-{\rm Isoc}^\dagger(X,\overline{X}) \longrightarrow F-{\rm Isoc}^\dagger(X{\setminus}Z, \overline{X}{\setminus}\overline{Z})} is an equivalence of categories. We also give an application of our result to the equivalence of certain categories.  相似文献   

18.
For a shape-regular triangulation ${\mathcal{T}_h}For a shape-regular triangulation _h{\mathcal{T}_h} without obtuse angles of a bounded polygonal domain W ì ?2{\Omega\subset\Re^2} , let Lh{\mathcal L_h} be the space of continuous functions linear on the triangles from Th{\mathcal{T}_h} and Π h the interpolation operator from C([`(W)]){C(\overline\Omega)} to Lh{\mathcal L_h} . This paper is devoted to the following classical problem: Find a second-order approximation of the derivative ?u/?z(a){\partial u/\partial z(a)} in a direction z of a function u ? C3([`(W)]){u\in C^3(\overline\Omega)} in a vertex a in the form of a linear combination of the constant directional derivatives ?Ph(u)/?z{\partial \Pi_h(u)/\partial z} on the triangles surrounding a. An effective procedure for such an approximation is presented, its error is proved to be of the size O(h 2), an operator Wh: Lh?Lh×Lh{\mbox{W}_h: \mathcal L_h\longrightarrow\mathcal L_h\times\mathcal L_h} relating a second-order approximation W h h (u)] of ?u{\nabla u} to every u ? C3([`(W)]){u\in C^3(\overline\Omega)} is constructed and shown to be a so-called recovery operator. The accuracy of the presented approximation is compared with the accuracies of the local approximations by other known techniques numerically.  相似文献   

19.
Let f be a cusp form of the Hecke space \frak M0(l,k,e){\frak M}_0(\lambda,k,\epsilon) and let L f be the normalized L-function associated to f. Recently it has been proved that L f belongs to an axiomatically defined class of functions [`(S)]\sharp\bar{\cal S}^\sharp . We prove that when λ ≤ 2, L f is always almost primitive, i.e., that if L f is written as product of functions in [`(S)]\sharp\bar{\cal S}^\sharp , then one factor, at least, has degree zeros and hence is a Dirichlet polynomial. Moreover, we prove that if l ? {?2,?3,2}\lambda\notin\{\sqrt{2},\sqrt{3},2\} then L f is also primitive, i.e., that if L f = F 1 F 2 then F 1 (or F 2) is constant; for l ? {?2,?3,2}\lambda\in\{\sqrt{2},\sqrt{3},2\} the factorization of non-primitive functions is studied and examples of non-primitive functions are given. At last, the subset of functions f for which L f belongs to the more familiar extended Selberg class S\sharp{\cal S}^\sharp is characterized and for these functions we obtain analogous conclusions about their (almost) primitivity in S\sharp{\cal S}^\sharp .  相似文献   

20.
In this paper we classify the centers localized at the origin of coordinates, the cyclicity of their Hopf bifurcation and their isochronicity for the polynomial differential systems in \mathbbR2{\mathbb{R}^2} of degree d that in complex notation z = x + i y can be written as
[(z)\dot] = (l+i) z + (z[`(z)])\fracd-52 (A z4+j[`(z)]1-j + B z3[`(z)]2 + C z2-j[`(z)]3+j+D[`(z)]5), \dot z = (\lambda+i) z + (z \overline{z})^{\frac{d-5}{2}} \left(A z^{4+j} \overline{z}^{1-j} + B z^3 \overline{z}^2 + C z^{2-j} \overline{z}^{3+j}+D \overline{z}^5\right),  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号