首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
D(β)-vertex-distinguishing total coloring of graphs   总被引:2,自引:0,他引:2  
A new concept of the D(β)-vertex-distinguishing total coloring of graphs, i.e., the proper total coloring such that any two vertices whose distance is not larger thanβhave different color sets, where the color set of a vertex is the set composed of all colors of the vertex and the edges incident to it, is proposed in this paper. The D(2)-vertex-distinguishing total colorings of some special graphs are discussed, meanwhile, a conjecture and an open problem are presented.  相似文献   

2.
关于图的星色数的一点注记   总被引:1,自引:0,他引:1  
A star coloring of an undirected graph G is a proper coloring of G such that no path of length 3 in G is bicolored.The star chromatic number of an undirected graph G,denoted by χs(G),is the smallest integer k for which G admits a star coloring with k colors.In this paper,we show that if G is a graph with maximum degree △,then χs(G) ≤ [7△3/2],which gets better bound than those of Fertin,Raspaud and Reed.  相似文献   

3.
Let G be a simple graph of order at least 2.A VE-total-coloring using k colors of a graph G is a mapping f from V (G) E(G) into {1,2,···,k} such that no edge receives the same color as one of its endpoints.Let C(u)={f(u)} {f(uv) | uv ∈ E(G)} be the color-set of u.If C(u)=C(v) for any two vertices u and v of V (G),then f is called a k-vertex-distinguishing VE-total coloring of G or a k-VDVET coloring of G for short.The minimum number of colors required for a VDVET coloring of G is denoted by χ ve vt (G) and it is called the VDVET chromatic number of G.In this paper we get cycle C n,path P n and complete graph K n of their VDVET chromatic numbers and propose a related conjecture.  相似文献   

4.
《数学季刊》2016,(2):147-154
Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. For each vertex x of G, let C(x) be the set of colors of vertex x and edges incident to x under f. For an IE-total coloring f of G using k colors, if C(u) 6= C(v) for any two different vertices u and v of G, then f is called a k-vertex-distinguishing IE-total-coloring of G or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χievt(G) and is called vertex-distinguishing IE-total chromatic number or the VDIET chromatic number of G for short. The VDIET colorings of complete bipartite graphs K8,n are discussed in this paper. Particularly, the VDIET chromatic number of K8,n are obtained.  相似文献   

5.
An acyclic edge coloring of a graph G is a proper edge coloring such that there are no bichromatic cycles.The acyclic edge chromatic number of a graph G is the minimum number k such that there exists an acyclic edge coloring using k colors and is denoted by χ’ a(G).In this paper we prove that χ ’ a(G) ≤(G) + 5 for planar graphs G without adjacent triangles.  相似文献   

6.
Let G be a simple graph. A total coloring f of G is called an E-total coloring if no two adjacent vertices of G receive the same color, and no edge of G receives the same color as one of its endpoints. For an E-total coloring f of a graph G and any vertex x of G, let C(x) denote the set of colors of vertex x and of the edges incident with x, we call C(x) the color set of x. If C(u)≠ C(v) for any two different vertices u and v of V(G), then we say that f is a vertex-distinguishing E-total coloring of G or a VDET coloring of G for short. The minimum number of colors required for a VDET coloring of G is denoted by χ_(vt)~e(G) and is called the VDET chromatic number of G. The VDET coloring of complete bipartite graph K_(7,n)(7 ≤ n ≤ 95) is discussed in this paper and the VDET chromatic number of K_(7,n)(7 ≤ n ≤ 95) has been obtained.  相似文献   

7.
王继顺 《数学季刊》2012,(3):328-336
Let G(V, E) be a simple connected graph and k be positive integers. A mapping f from V∪E to {1, 2, ··· , k} is called an adjacent vertex-distinguishing E-total coloring of G(abbreviated to k-AVDETC), if for uv ∈ E(G), we have f(u) ≠ f(v), f(u) ≠ f(uv), f(v) ≠ f(uv), C(u) ≠C(v), where C(u) = {f(u)}∪{f(uv)|uv ∈ E(G)}. The least number of k colors required for which G admits a k-coloring is called the adjacent vertex-distinguishing E-total chromatic number of G is denoted by xeat (G). In this paper, the adjacent vertexdistinguishing E-total colorings of some join graphs Cm∨Gn are obtained, where Gn is one of a star Sn , a fan Fn , a wheel Wn and a complete graph Kn . As a consequence, the adjacent vertex-distinguishing E-total chromatic numbers of Cm∨Gn are confirmed.  相似文献   

8.
Let G be a simple graph.An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color.Let C(u) be the set of colors of vertex u and edges incident to u under f.For an IE-total coloring f of G using k colors,if C(u)=C(v) for any two different vertices u and v of V(G),then f is called a k-vertex-distinguishing IE-total-coloring of G,or a k-VDIET coloring of G for short.The minimum number of colors required for a VDIET coloring of G is denoted by χ ie vt (G),and it is called the VDIET chromatic number of G.We will give VDIET chromatic numbers for complete bipartite graph K4,n (n≥4),K n,n (5≤ n ≤ 21) in this article.  相似文献   

9.
Let G be a simple graph.An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color.Let C(u) be the set of colors of vertex u and edges incident to u under f.For an IE-total coloring f of G using k colors,if C(u)=C(v) for any two different vertices u and v of V(G),then f is called a k-vertex-distinguishing IE-total-coloring of G,or a k-VDIET coloring of G for short.The minimum number of colors required for a VDIET coloring of G is denoted by χ ie vt (G),and it is called the VDIET chromatic number of G.We will give VDIET chromatic numbers for complete bipartite graph K4,n (n≥4),K n,n (5≤ n ≤ 21) in this article.  相似文献   

10.
An adjacent vertex distinguishing incidence coloring of graph G is an incidence coloring of G such that no pair of adjacent vertices meets the same set of colors.We obtain the adjacent vertex distinguishing incidence chromatic number of the Cartesian product of a path and a path,a path and a wheel,a path and a fan,and a path and a star.  相似文献   

11.
Let G be a simple graph. A total coloring f of G is called E-total-coloring if no two adjacent vertices of G receive the same color and no edge of G receives the same color as one of its endpoints. For E-total-coloring f of a graph G and any vertex u of G, let Cf (u) or C(u) denote the set of colors of vertex u and the edges incident to u. We call C(u) the color set of u. If C(u) ≠ C(v) for any two different vertices u and v of V(G), then we say that f is a vertex-distinguishing E-total-coloring of G, or a VDET coloring of G for short. The minimum number of colors required for a VDET colorings of G is denoted by X^evt(G), and it is called the VDET chromatic number of G. In this article, we will discuss vertex-distinguishing E-total colorings of the graphs mC3 and mC4.  相似文献   

12.
Let G be a graph which can be embedded in a surface of nonnegative Euler characteristic.In this paper,it is proved that the total chromatic number of G is △(G)+1 if △(G)9,where △(G)is the maximum degree of G.  相似文献   

13.
The minimum number of colors needed to properly color the vertices and edges of a graph G is called the total chromatic number of G and denoted by χ’’ (G). It is shown that if a planar graph G has maximum degree Δ≥9, then χ’’ (G) = Δ + 1. In this paper, we prove that if G is a planar graph with maximum degree 8 and without intersecting chordal 4-cycles, then χ ’’(G) = 9.  相似文献   

14.
Let G =(V,E) be a simple graph.For any real function g :V-→ R and a subset S V,we write g(S) =∑v∈Sg(v).A function f :V-→ [0,1] is said to be a fractional dominating function(F DF) of G if f(N [v]) ≥ 1 holds for every vertex v ∈ V(G).The fractional domination number γf(G) of G is defined as γf(G) = min{f(V)|f is an F DF of G }.The fractional total dominating function f is defined just as the fractional dominating function,the difference being that f(N(v)) ≥ 1 instead of f(N [v]) ≥ 1.The fractional total domination number γ0f(G) of G is analogous.In this note we give the exact values ofγf(Cm × Pn) and γ0f(Cm × Pn) for all integers m ≥ 3 and n ≥ 2.  相似文献   

15.
设G是简单图,若图G的全染色f满足:1)(?)uv,vw∈E(G),有f(uv)≠f(vw);2)(?)uv∈E(G),u≠v,有f(u)≠f(v);3)(?)u,v∈V(G),0相似文献   

16.
关于图的符号边全控制数   总被引:1,自引:0,他引:1  
Let G = (V,E) be a graph.A function f : E → {-1,1} is said to be a signed edge total dominating function (SETDF) of G if e ∈N(e) f(e ) ≥ 1 holds for every edge e ∈ E(G).The signed edge total domination number γ st (G) of G is defined as γ st (G) = min{ e∈E(G) f(e)|f is an SETDF of G}.In this paper we obtain some new lower bounds of γ st (G).  相似文献   

17.
For a proper edge coloring c of a graph G,if the sets of colors of adjacent vertices are distinct,the edge coloring c is called an adjacent strong edge coloring of G.Let c i be the number of edges colored by i.If |c i c j | ≤ 1 for any two colors i and j,then c is an equitable edge coloring of G.The coloring c is an equitable adjacent strong edge coloring of G if it is both adjacent strong edge coloring and equitable edge coloring.The least number of colors of such a coloring c is called the equitable adjacent strong chromatic index of G.In this paper,we determine the equitable adjacent strong chromatic index of the joins of paths and cycles.Precisely,we show that the equitable adjacent strong chromatic index of the joins of paths and cycles is equal to the maximum degree plus one or two.  相似文献   

18.
本文构造出了星色数为3+1/d,3+2(2d-1),3+3/(3d-1),和3+3/(3d-2)的一些平面图类,从而部分解决了Vince的问题.  相似文献   

19.
设G是简单图,若图G的全染色f满足:1)(V)uv,vw∈E(G),有f(uv)≠f(vw);2)(V)uv∈E(G),u≠v,有f(u)≠f(v);3)(V)u,v∈V(G),0<d(u,v)≤β,有S(u)≠S(v),这里色集合S(u)={f(u)}∪{f(uv) |uv∈E(G)}.则称f是图G的一个D(β)-点可区别Ⅰ-全染色.若f只满足条件1)和3),则称f是图G的一个D(β)-点可区别Ⅵ-全染色.研究了当β=1,2时一类正则循环图与圈的Cartesian积图的D(β)-点可区别Ⅵ-全色数和D(β)-点可区别Ⅰ-全色数,并讨论了正则图的D(β)-点可区别Ⅵ-全色数和D(β)-点可区别Ⅰ-全色数的上界.  相似文献   

20.
C_m·S_n的D(2)-点可区别边色数   总被引:1,自引:0,他引:1  
对阶数不小于3的连通图G(V,E),设α,β为正整数,令映射f:Ef{1,2,…,α},若u,v∈V(G),1≤d(u,v)≤β,有C(u)≠C(v),则称f为G的一个α-D(β)-点可区别的边染色,简记为α-D(β)-VDPEC,对一个图进行α-D(β)-点可区别的边染色,所需的最少的颜色数称为图G的D(β)-点可区别的边色数,记为χ′β-vd(G),其中d(u,v)表示两个点u,v之间的最短距离.得到了Cm.Sn的D(2)-点可区别边色数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号