首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A Bacillus subtilis isolate was shown to be able to produce extracellular protease in solid-state fermentations (SSF) using soy cake as culture medium. A significant effect of inoculum concentration and physiological age on protease production was observed. Maximum activities were obtained for inocula consisting of exponentially growing cells at inoculum concentrations in the range of 0.7–2.0 mg g−1. A comparative study on the influence of cultivation temperature and initial medium pH on protease production in SSF and in submerged fermentation (SF) revealed that in SSF a broader pH range (5–10), but the same optimum temperature (37°C), is obtained when compared to SF. A kinetic study showed that enzyme production is associated with bacterial growth and that enzyme inactivation begins before biomass reaches a maximum level for both SF and SSF. Maximum protease activity and productivity were 960 U g−1 and 15.4 U g−1 h−1 for SSF, and 12 U mL−1 and 1.3 U mL−1 h−1 for SF. When SSF protease activity was expressed by volume of enzyme extract, the enzyme level was 10-fold higher and the enzyme productivity 45% higher than in SF. These results indicate that this bacterial strain shows a high biotechnological potential for protease production in solid-state fermentation.  相似文献   

2.
A process of solid state fermentation (SSF) on tomato pomace was developed with the white-rot fungi Pleurotus ostreatus and Trametes versicolor, using sorghum stalks as support. Operative parameters (humidity, water activity, and size of substrate particles) guaranteeing a good colonization of tomato pomace by both fungi were defined and conditions for production at high titers of the industrially relevant enzymes laccase, xylanase and protease were identified. Significant laccase activity levels (up to 36 U g−1 dry matter) were achieved without any optimization of culture conditions, neither by nutrient addition nor by O2 enrichment. Furthermore, protease activity levels up to 34,000 U g−1 dry matter were achieved, being higher than those reported for the fungi typically considered as the best protease producers such as Aspergillus strains. Moreover, as one of the most significant results of this study, analysis of P. ostreatus tomato SSF samples by zymogram revealed two bands with laccase activity which had not been detected so far.  相似文献   

3.
A central composite design of the response surface methodology (RSM) was employed to study the effects of temperature, enzyme concentration, and stirring rate on recycled-paper enzymatic hydrolysis. Among the three variables, temperature and enzyme concentration significantly affected the conversion efficiency of substrate, whereas stirring rate was not effective. A quadratic polynomial equation was obtained for enzymatic hydrolysis by multiple regression analysis using RSM. The results of validation experiments were coincident with the predicted model. The optimum conditions for enzymatic hydrolysis were temperature, enzyme concentration, and stirring rate of 43.1 °C, 20 FPU g−1 substrate, and 145 rpm, respectively. In the subsequent simultaneous saccharification and fermentation (SSF) experiment under the optimum conditions, the highest 28.7 g ethanol l−1 was reached in the fed-batch SSF when 5% (w/v) substrate concentration was used initially, and another 5% added after 12 h fermentation. This ethanol output corresponded to 77.7% of the theoretical yield based on the glucose content in the raw material.  相似文献   

4.
A fed-batch culture system with constant feeding (glucose 80 g L−1, 0.25 ml min−1) was used to study the influence of glucose on cell dry weight and exopolysaccharides production from submerged Tremella fuciformis spores in a 5-L stirred-tank bioreactor. The results showed that high levels of cell mass (9.80 g L−1) and exopolysaccharides production (3.12 g L−1) in fed-batch fermentation were obtained after 1 h of feeding, where the specific growth rate (μ) and exopolysaccharides yield on substrate consumed (YP/S) were 0.267 d−1 and 0.14 g g−1. Unlike batch fermentation, maximal cell mass and exopolysaccharides production merely reached 7.11 and 2.08 g L−1; the specific growth rate (μ) and exopolysaccharides yield on substrate consumed (YP/S) were 0.194 d−1 and 0.093 g g−1, respectively. It is concluded that the synthesis of exopolysaccharides can be promoted effectively when feeding glucose at a late exponential phase.  相似文献   

5.
Butyric acid has many applications in chemical, food, and pharmaceutical industries. In the present study, Clostridium tyrobutyricum ATCC 25755 was immobilized in a fibrous-bed bioreactor to evaluate the performance of butyrate production from glucose and xylose. The results showed that the final concentration and yield of butyric acid were 13.70 and 0.46 g g−1, respectively, in batch fermentation when 30 g L−1 glucose was introduced into the bioreactor. Furthermore, high concentration 10.10 g L−1 and yield 0.40 g g−1 of butyric acid were obtained with 25 g L−1 xylose as the carbon source. The immobilized cells of C. tyrobutyricum ensured similar productivity and yield from repeated batch fermentation. In the fed-batch fermentation, the final concentration of butyric acid was further improved to 24.88 g L−1 with one suitable glucose feeding in the fibrous-bed bioreactor. C. tyrobutyricum immobilized in the fibrous-bed bioreactor would provide an economically viable fermentation process to convert the reducing sugars derived from plant biomass into the final bulk chemical (butyric acid).  相似文献   

6.
In this study, we evaluated the feasibility of solid-state fermentation (SSF) on polyurethane foam (PUF) for xanthan production. The effects of air pressure pulsation (APP) on biomass accumulation and final xanthan concentration were also studied. Under suitable conditions (15% inoculum, 0.5-cm (side length) PUF cubes, 15 mL medium per gram cubes and 4.5 cm bed depth), the broth was dispersed on the PUF as a film. When the initial glucose concentration in the media was low (20 and 40 g L−1), there was no significant difference between the final xanthan concentration in static SSF and submerged fermentation (SMF). When high initial glucose concentrations (60 and 80 g L−1) were used, the final gum concentrations in SSF were much higher than those in SMF. When the APP technique was applied in xanthan production with a medium containing a high glucose concentration (80 g L−1), the oxygen consumption rate of Xanthomonas campestris was significantly enhanced at the later stages of fermentation, and both the biomass and xanthan concentration were improved. The results indicated that SSF on PUF is suitable for xanthan preparation, especially when the initial glucose concentration ranged from 60 to 80 g L−1. Those results also demonstrated that APP technology can be used to enhance xanthan yields.  相似文献   

7.
Production of an extracellular lipase from Serratia marcescens ECU1010, which is an industrially important biocatalyst for the stereospecific synthesis of Diltiazem precusor, was carefully optimized in both shake flasks and a fermenter, using Tween-80 as the enzyme inducer. Dextrin and beef extract combined with ammonium sulfate were indicated to be the best carbon and nitrogen sources, respectively. With the increase of Tween-80 from 0 to 10 g l−1, the lipase production was greatly enhanced from merely 250 U l−1 to a maximum of 3,340 U l−1, giving the highest lipase yield of ca 640 U g−1 dry cell mass (DCW), although the maximum biomass (6.0 g DCW l−1) was achieved at 15 g l−1 of Tween-80. When the medium loading in shake flasks was reduced from 20 to 10% (v / v), the lipase production was significantly enhanced. The increase in shaking speed also resulted in an improvement of the lipase production, although the cell growth was slightly repressed, suggesting that the increase of dissolved oxygen (DO) concentration contributed to the enhancements of lipase yield. When the lipase fermentation was carried out in a 5-l fermenter, the lipase production reached a new maximum of 11,060 U l−1 by simply raising the aeration rate from 0.5 to 1.0 vvm, while keeping the dissolved oxygen above 20% saturation via intermittent adjustment of the agitation speed (≥400 rpm), in the presence of a relatively low concentration (2 g l−1) of Tween-80 to prevent a potential foaming problem, which is easy to occur in the intensively aerated fermenter.  相似文献   

8.
A feeding technology that was suitable for improving the nisin production by Lactococcus lactis subsp. lactis W28 was established. The effects of initial sucrose concentration (ISC) in the fermentation broth, feeding time, and feeding rate on the fermentation were studied. It was observed that a fed-batch culture (ISC = 10 g l−1) with 100 ml sucrose solution (190 g l−1) being evenly fed (9–10 ml h−1) into the fermenter after 3-h fermentation gave the best performance in terms of biomass and nisin yield. Under these conditions, the total biomass and the total nisin yield were approximately 23% and 51% higher than those in batch fermentation, respectively. When the sucrose concentration was controlled at 5–10 g l−1 in variable volume intermittent fed-batch fermentation (VVIF) with ISC = 10 g l−1, the total biomass and the total nisin yield were 29% and 60% above those in batch fermentation, respectively. The VVIF proved to be effective to eliminate the substrate inhibition by maintaining sucrose at appropriate levels. It is also easy to be scaled up, since various parameters involved in industrial production were taken into account.  相似文献   

9.
There is a lack of fundamental knowledge about the scale up of biosurfactant production. In order to develop suitable technology of commercialization, carrying out tests in shake flasks and bioreactors was essential. A reactor with integrated foam collector was designed for biosurfactant production using Bacillus subtilis isolated from agricultural soil. The yield of biosurfactant on biomass (Y p/x), biosurfactant on sucrose (Y p/s), and the volumetric production rate (Y) for shake flask were obtained about 0.45 g g−1, 0.18 g g−1, and 0.03 g l−1 h−1, respectively. The best condition for bioreactor was 300 rpm and 1.5 vvm, giving Y x/s, Y p/x, Y p/s, and Y of 0.42 g g−1, 0.595 g g−1, 0.25 g g−1, and 0.057 g l−1 h−1, respectively. The biosurfactant maximum production, 2.5 g l−1, was reached in 44 h of growth, which was 28% better than the shake flask. The obtained volumetric oxygen transfer coefficient (K L a) values at optimum conditions in the shake flask and the bioreactor were found to be around 0.01 and 0.0117 s−1, respectively. Comparison of K L a values at optimum conditions shows that biosurfactant production scaling up from shake flask to bioreactor can be done with K L a as scale up criterion very accurately. Nearly 8% of original oil in place was recovered using this biosurfactant after water flooding in the sand pack.  相似文献   

10.
In order to decrease the alkali and water consumptions in the sugarcane bagasse alkaline/oxidative pretreatment for ethanol production, an alkaline recycle process was carried out. Two recycles of NaOH/H2O2 pretreatment did not decrease the pretreatment and enzymatic hydrolysis efficiencies and the consumptions of NaOH and water would be saved by 26% and 40%, respectively. A simultaneous saccharification and fermentation (SSF) culture with pretreated bagasse as substrate was developed giving 25 g ethanol l−1 with a yield of 0.2 g g−1 bagasse and productivity of 0.52 g l−1 h−1.  相似文献   

11.
Among all endophytic keratinolytic fungal isolates recovered from marine soft coral Dendronephthya hemprichii, Penicillium spp. Morsy1 was selected as the hyperactive keratinolytic strain under solid substrate fermentation of different agriculture and poultry wastes. The optimization of extraction process, physicochemical parameters affecting the keratinase production in solid-state fermentation, and the purified keratinase parameters were studied. Maximum keratinase activity (1,600 U g−1, initial dry substrate) was recovered from moldy bran with 0.1% Tween 80. The optimized production conditions were rice straw as carbon source, pH of medium 6, growth temperature 26 °C, initial moisture content of 80% (v/w), inoculum size of 105 spores ml−1, and an average particle size of the substrate 0.6 mm (3,560 U g−1, initial dry substrate after 5 days of fermentation). Two types of keratinase (Ahm1 and Ahm2) were purified from the culture supernatant through ammonium sulfate precipitation, DEAE-Sepharose, and gel filtration chromatography. Enzyme molecular weights were 19 kDa (Ahm1) and 40 kDa (Ahm2). The kinetic parameters of purified keratinases were optimized for the hydrolysis of azokeratin by Ahm1 (pH 7.0–8.0, stable in pH range of 6.0 to 8.0 at 50 °C) and Ahm2 enzymes (pH 10.0–11.0, stable in pH range of 6.0 to 11.0 at 60–65 °C). Whereas inhibitors of serine (phenylmethylsulfonyl fluoride) and cysteine (iodoacetamide) proteases had minor effects on both Ahm1 and Ahm2 activity, both keratinases were strongly inhibited by chelating agents EDTA and EGTA. These findings suggest that serine and cysteine residues are not involved in the catalytic mechanisms, and they are metalloproteases.  相似文献   

12.
Research is needed to allow more efficient processing of lignocellulose from abundant plant biomass resources for production to fuel ethanol at lower costs. Potential dedicated feedstock species vary in degrees of recalcitrance to ethanol processing. The standard dilute acid hydrolysis pretreatment followed by simultaneous sacharification and fermentation (SSF) was performed on leaf and stem material from three grasses: giant reed (Arundo donax L.), napiergrass (Pennisetum purpureum Schumach.), and bermudagrass (Cynodon spp). In a separate study, napiergrass, and bermudagrass whole samples were pretreated with esterase and cellulose before fermentation. Conversion via SSF was greatest with two bermudagrass cultivars (140 and 122 mg g−1 of biomass) followed by leaves of two napiergrass genotypes (107 and 97 mg g−1) and two giant reed clones (109 and 85 mg g−1). Variability existed among bermudagrass cultivars for conversion to ethanol after esterase and cellulase treatments, with Tifton 85 (289 mg g) and Coastcross II (284 mg g−1) being superior to Coastal (247 mg g−1) and Tifton 44 (245 mg g−1). Results suggest that ethanol yields vary significantly for feedstocks by species and within species and that genetic breeding for improved feedstocks should be possible.  相似文献   

13.
Viable cells of Candida guilliermondii were immobilized by inclusion into polyvinyl alcohol (PVA) hydrogel using the freezing–thawing method. Entrapment experiments were planned according to a 23 full factorial design, using the PVA concentration (80, 100, and 120 g L−1), the freezing temperature (−10, −15, and −20 °C), and the number of freezing-thawing cycles (one, three, and five) as the independent variables, integrated with three additional tests to estimate the errors. The effectiveness of the immobilization procedure was checked in Erlenmeyer flasks as the pellet capability to catalyze the xylose-to-xylitol bioconversion of a medium based on sugarcane bagasse hemicellulosic hydrolysate. To this purpose, the yield of xylitol on consumed xylose, xylitol volumetric productivity, and cell retention yield were selected as the response variables. Cell pellets were then used to perform the same bioconversion in a stirred tank reactor operated at 400 rpm, 30 °C, and 1.04 vvm air flowrate. At the end of fermentation, a maximum xylitol concentration of 28.7 g L−1, a xylitol yield on consumed xylose of 0.49 g g−1 and a xylitol volumetric productivity of 0.24 g L−1 h−1 were obtained.  相似文献   

14.
In this study, a fermentor consisting of four linked stirred towers that can be used for simultaneous saccharification and fermentation (SSF) and for the accumulation of cell mass was applied to the continuous production of ethanol using cassava as the starchy material. For the continuous process with SSF, the pretreated cassava liquor and saccharification enzyme at total sugar concentrations of 175 g/L and 195 g/L were continuously fed to the fermentor with dilution rates of 0.014, 0.021, 0.031, 0.042, and 0.05 h−1. Considering the maximum saccharification time, the highest volumetric productivity and ethanol yield were observed at a dilution rate of 0.042 h−1. At dilution rates in the range of 0.014 h−1 to 0.042 h−1, high production rates were observed, and the yeast in the first to fourth fermentor showed long-term stability for 2 months with good performance. Under the optimal culture conditions with a feed sugar concentration of 195 g/L and dilution rate of 0.042 h−1, the ethanol volumetric productivity and ethanol yield were 3.58 g/L∙h and 86.2%, respectively. The cell concentrations in the first to fourth stirred tower fermentors were 74.3, 71.5, 71.2, and 70.1 g dry cell/L, respectively. The self-flocculating yeast, Saccharomyces cerevisiae CHFY0321, developed by our group showed excellent fermentation results under continuous ethanol production.  相似文献   

15.
Thermomucor indicae-seudaticae, a glucoamylase-producing thermophilic mould, was mutagenised using nitrous acid and gamma (60Co) irradiation in a sequential manner to isolate deregulated mutants for enhanced production of glucoamylase. The mutants were isolated on Emerson YpSs agar containing a non-metabolisable glucose analogue 2-deoxy-d-glucose (2-DG) for selection. The preliminary screening for glucoamylase production using starch–iodine plate assay followed by quantitative confirmation in submerged fermentation permitted the isolation of several variants showing varying levels of derepression and glucoamylase secretion. The mutant strain T. indicae-seudaticae CR19 was able to grow in the presence of 0.5 g l−1 2-DG and produced 1.8-fold higher glucoamylase. As with the parent strain, glucoamylase production by T. indicae-seudaticae CR19 in 250-ml Erlenmeyer flasks attained a peak in 48 h of fermentation, showing higher glucoamylase productivity (0.67 U ml−1 h−1) than the former (0.375 U ml−1 h−1). A large-scale cultivation in 5-l laboratory bioreactor confirmed similar fermentation profiles, though the glucoamylase production peak was attained within 36 h attributable to the better control of process parameters. Although the mutant grew slightly slow in the presence of 2-DG and exhibited less sporulation, it showed faster growth on normal Emerson medium with a higher specific growth rate (0.138 h−1) compared to the parent strain (0.123 h−1). The glucoamylase produced by both strains was optimally active at 60 °C and pH 7.0 and displayed broad substrate specificity by cleaving α-1,4- and α-1,6-glycosidic linkages in starch, amylopectin, amylose and pullulan. Improved productivity and higher specific growth rate make T. indicae-seudaticae CR19 a useful strain for glucoamylase production.  相似文献   

16.
The aim of this work was to develop procedures for the simultaneous determination of selected brominated flame retardants (BFRs) in river water and in river bed sediment. The target analytes were polybrominated diphenyl ethers (PBDEs) and tetrabromobisphenol A (TBBPA). To determine dissolved BFRs, a novel mixed-mode solid-phase extraction procedure was developed by combining a hydrophobic sorbent (C18) with a silica-based anion exchange sorbent, so as to overcome the negative artefact induced by dissolved organic carbon. Extraction recoveries exceeded 73% for most analytes, except for BDE-183 and BDE-209 (57%). As regards suspended sediment and river bed sediment, extraction was carried out by means of ultrasonication (recoveries: 73–94%). These procedures, combined to gas chromatography coupled to negative chemical ionisation mass spectrometry (GC-NCI-MS), enabled the determination of BFRs at trace level: 3-160 pg L−1 in river water, 5–145 pg g−1 in bed sediment. These methods were applied to the determination of PBDEs and TBBPA in a suburban river (near Paris, France). PBDEs were systematically detected in the water column (ΣBDEs, 2,300–4,300 pg L−1); they partitioned between the dissolved and particulate phases and BDE-209 was the dominant congener, followed by BDE-99 and BDE-47. TBBPA was detected in the dissolved phase only (<35–68 pg L−1). All selected BFRs were ubiquitous in bed sediments and levels ranged from 3,100 to 15,100 pg g−1 and from 70 to 280 pg g−1 (dry weight), for ΣBDEs and TBBPA, respectively.  相似文献   

17.
The results of this study indicate that an increase in CO2 percentage to 30% can enhance Scenedesmus sp. growth in autotrophic cultivation to a maximum of 0.85 g/l as compared with 0.6 g/l obtained in the batch with air (after 6 days of cultivation). However, while the CO2 was higher than 30%, it showed a negative impact on cell growth. A mixotrophic cultivation with 3 g/l of glycerol can achieve 0.38 g l−1 day−1 of the maximum biomass productivity compared with that of 0.21 g l−1 day−1 in autotrophic cultivation. Nevertheless, the lutein content of the mixotrophic cultivation was 0.08–0.1% lower than 0.2–0.25% obtained in autotrophic cultivation, which led to a lower lutein productivity of 0.36 mg l−1 day−1 in the mixotrophic batch compared with 0.44 mg l−1 day−1 obtained in the autotrophic batch. The limitation of cell growth in the mixotrophic cultivation would be the contributing factor regarding the lower lutein productivity. The mixotrophic cultivation of repeated batch to remove potential inhibitive metabolic products from glycerol catabolism does not show an obvious improvement on biomass. Conclusively, mixotrophic cultivation achieves higher biomass productivity with lower lutein content than that of autotrophic cultivation, which leads to lower lutein productivity. Therefore, the autotrophic cultivation is preferred in the lutein production.  相似文献   

18.
This work presents a continuous simultaneous saccharification and fermentation (SSF) process to produce ethanol from starch using glucoamylase and Saccharomyces cerevisiae co-immobilized in pectin gel. The enzyme was immobilized on macroporous silica, after silanization and activation of the support with glutaraldehyde. The silica–enzyme derivative was co-immobilized with yeast in pectin gel. This biocatalyst was used to produce ethanol from liquefied manioc root flour syrup, in three fixed bed reactors. The initial reactor yeast load was 0.05 g wet yeast/ml of reactor (0.1 g wet yeast/g gel), used in all SSF experiments. The enzyme concentration in the reactor was defined by running SSF batch assays, using different amount of silica–enzyme derivative, co-immobilized with yeast in pectin gel. The chosen reactor enzyme concentration, 3.77 U/ml, allowed fermentation to be the rate-limiting step in the batch experiment. In this condition, using initial substrate concentration of 166.0 g/l of total reducing sugars (TRS), 1 ml gel/1 ml of medium, ethanol productivity of 8.3 g/l/h was achieved, for total conversion of starch to ethanol and 91% of the theoretical yield. In the continuous runs, feeding 163.0 g/l of TRS and using the same enzyme and yeast concentrations used in the batch run, ethanol productivity was 5.9 g ethanol/l/h, with 97% of substrate conversion and 81% of the ethanol theoretical yield. Diffusion effects in the extra-biocatalyst film seemed to be reduced when operating at superficial velocities above 3.7 × 10−4 cm/s.  相似文献   

19.
Substrate concentration in lactic acid fermentation broth could not be controlled well by traditional feeding methods, including constant, intermittent, and exponential feeding methods, in fed-batch experiments. A simple feedback feeding method based on pH was proposed to control pH and substrate concentration synchronously to enhance lactic acid production in fed-batch culture. As the linear relationship between the consumption amounts of alkali and that of substrate was concluded during lactic acid fermentation, the alkali and substrate in the feeding broth were mixed together proportionally. Thus, the concentration of substrate could be controlled through the adjustment of pH automatically. In the fed-batch lactic acid fermentation with Lactobacillus lactis-11 by this method, the residual glucose concentration in fermentation broth was controlled between 4.1 and 4.9 g L−1, and the highest concentration of lactic acid, maximum cell dry weight, volumetric productivity of lactic acid, and yield were 96.3 g L−1, 4.7 g L−1, 1.9 g L−1 h−1, and 0.99 g lactic acid per gram of glucose, respectively, compared to 82.7 g L−1, 3.31 g L−1, 1.7 g L−1 h−1, and 0.92 g lactic acid per gram of glucose in batch culture. This feeding method was simple and easily operated and could be feasible for industrial lactic acid production in the future.  相似文献   

20.
Palm kernel press cake (PKC) is a residue from palm oil extraction presently only used as a low protein feed supplement. PKC contains 50% fermentable hexose sugars present in the form of glucan and mainly galactomannan. This makes PKC an interesting feedstock for processing into bioethanol or in other biorefinery processes. Using a combination of mannanase, β-mannosidase, and cellulases, it was possible without any pretreatment to hydrolyze PKC at solid concentrations of 35% dry matter with mannose yields up to 88% of theoretical. Fermentation was tested using Saccharomyces cerevisiae in both a separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) setup. The hydrolysates could readily be fermented without addition of nutrients and with average fermentation yields of 0.43?±?0.02 g/g based on consumed mannose and glucose. Employing SSF, final ethanol concentrations of 70 g/kg was achieved in 216 h, corresponding to an ethanol yield of 70% of theoretical or 200 g ethanol/kg PKC. Testing various enzyme mixtures revealed that including cellulases in combination with mannanases significantly improved ethanol yields. Processing PKC to ethanol resulted in a solid residue enriched in protein from 17% to 28%, a 70% increase, thereby potentially making a high-protein containing feed supplement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号