首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study is part of a large research and development project aimed at observing, describing and analyzing the learning processes of two seventh grade classes during a yearlong beginning algebra course in a computer intensive environment (CIE). The environment includes carefully designed algebra learning materials with a functional approach, and provides students with unconstrained freedom to use (or not use) computerized tools during the learning process at all times. This paper focuses on the qualitative and quantitative analyses of students’ work on one problem, which serves as a window through which we learn about the ways students worked on problems throughout the year. The analyses reveal the nature of students’ mathematical activity, and how such activity is related to both the instrumental views of the computerized tools that students develop and their freedom to use them. We describe and analyze the variety of approaches to symbolic generalizations, syntactic rules and equation solving and the many solution strategies pursued successfully by the students. On that basis, we discuss the strengths of the learning environment and the open questions and dilemmas it poses.  相似文献   

2.
This paper describes students’ interactions with dynamic diagrams in the context of an American geometry class. Students used the dragging tool and the measuring tool in Cabri Geometry to make mathematical conjectures. The analysis, using the cK¢ model of conceptions, suggests that incorporating technology in mathematics classrooms enabled a measure-preserving conception of congruency with which students’ could shift focus from shapes to properties. Students also interacted with dynamic diagrams in a novel way, which we call the functional mode of interaction with diagrams, relating outputs and inputs that result when dragging a figure. Students’ participation in classroom interactions through discourse and through actions on diagrams provided evidence of learning using tools within dynamic geometry software.  相似文献   

3.
In this work we studied the impact of using NuCalc, an interactive computer algebra software, on the development of a discourse community in a college level mathematics class. Qualitative and quantitative data were collected over the course of 3 weeks of instruction. We examined the influence of the software on: group interactions; the mathematical investigations of learners; and the teacher’s interactions with students. Data points to four distinct ways in which the presence of NuCalc positively impacted the learning community we studied: (1) it served as a tool for extending students’ mathematical thinking, (2) it motivated students’ engagement in group discourse, (3) it became a tool for mediating discourse, (4) it became a catalyst for refining the culture of classroom, shifting the patterns of interactions between the teacher and learners.  相似文献   

4.
The validity of students’ reasoning is central to problem solving. However, equally important are the operating premises from which students’ reason about problems. These premises are based on students’ interpretations of the problem information. This paper describes various premises that 11- and 12-year-old students derived from the information in a particular problem, and the way in which these premises formed part of their reasoning during a lesson. The teacher’s identification of differences in students’ premises for reasoning in this problem shifted the emphasis in a class discussion from the reconciliation of the various problem solutions and a focus on a sole correct reasoning path, to the identification of the students’ premises and the appropriateness of their various reasoning paths. Problem information that can be interpreted ambiguously creates rich mathematical opportunities because students are required to articulate their assumptions, and, thereby identify the origin of their reasoning, and to evaluate the assumptions and reasoning of their peers.  相似文献   

5.
Dynamic geometry software provides tools for students to construct and experiment with geometrical objects and relationships. On the basis of their experimentation, students make conjectures that can be tested with the tools available. In this paper, we explore the role of software tools in geometry problem solving and how these tools, in interaction with activities that embed the goals of teachers and students, mediate the problem solving process. Through analysis of successful student responses, we show how dynamic software tools can not only scaffold the solution process but also help students move from argumentation to logical deduction. However, by reference to the work of less successful students, we illustrate how software tools that cannot be programmed to fit the goals of the students may prevent them from expressing their (correct) mathematical ideas and thus impede their problem solution.This revised version was published online in September 2005 with corrections to the Cover Date.  相似文献   

6.
The purpose of this study was to analyse secondary school students’ (N = 16) computer-supported collaborative mathematical problem solving. The problem addressed in the study was: What kinds of metacognitive processes appear during computer-supported collaborative learning in mathematics? Another aim of the study was to consider the applicability of networked learning in mathematics. The network-based learning environment Knowledge Forum (KF) was used to support students’ collaborative problem solving. The data consist of 188 posted computer notes, portfolio material such as notebooks, and observations. The computer notes were analysed through three stages of qualitative content analysis. The three stages were content analysis of computer notesin mathematical problem solving, content analysis of mathematical problem solving activity and content analysis of the students’ metacognitive activity. The results of the content analysis illustrate how networked discussions mediated mathematical knowledge and students’ questions, while the mathematical problem solving activity shows that the students co-regulate their thinking. The results of the content analysis of the students’ metacognitive activity revealed that the students use metacognitive knowledge and make metacognitive judgments and perform monitoring during networked discussions. In conclusion, the results of this study demonstrate that working with the networked technology contributes to the students’ use of their mathematical knowledge and stimulates them into making their thinking visible. The findings also show some metacognitive activity in the students’ computer-supported collaborative problem solving in mathematics.  相似文献   

7.
We report a case study that explored how three college students mentally represented the knowledge they held of inferential statistics, how this knowledge was connected, and how it was applied in two problem solving situations. A concept map task and two problem categorization tasks were used along with interviews to gather the data. We found that the students’ representations were based on incomplete statistical understanding. Although they grasped various concepts and inferential tests, the students rarely linked key concepts together or to tests nor did they accurately apply that knowledge to categorize word problems. We suggest that one reason the students had difficulty applying their knowledge is that it was not sufficiently integrated. In addition, we found that varying the instruction for the categorization task elicited different mental representations. One instruction was particularly effective in revealing students’ partial understandings. This finding suggests that modifying the task format as we have done could be a useful diagnostic tool.  相似文献   

8.
Despite its importance in mathematical problem solving, verification receives rather little attention by the students in classrooms, especially at the primary school level. Under the hypotheses that (a) non-standard tasks create a feeling of uncertainty that stimulates the students to proceed to verification processes and (b) computational environments - by providing more available tools compared to the traditional environment - might offer opportunities for more frequent usage of verification techniques, we posed to 5th and 6th graders non-routine problems dealing with area of plane irregular figures. The data collected gave us evidence that computational environments allow the development of verification processes in a wider variety compared to the traditional paper-and-pencil environment and at the same time we had the chance to propose a preliminary categorization of the students’ verification processes under certain conditions.  相似文献   

9.
The paper introduces an exploratory framework for handling the complexity of students’ mathematical problem posing in small groups. The framework integrates four facets known from past research: task organization, students’ knowledge base, problem-posing heuristics and schemes, and group dynamics and interactions. In addition, it contains a new facet, individual considerations of aptness, which accounts for the posers’ comprehensions of implicit requirements of a problem-posing task and reflects their assumptions about the relative importance of these requirements. The framework is first argued theoretically. The framework at work is illustrated by its application to a situation, in which two groups of high-school students with similar background were given the same problem-posing task, but acted very differently. The novelty and usefulness of the framework is attributed to its three main features: it supports fine-grained analysis of directly observed problem-posing processes, it has a confluence nature, it attempts to account for hidden mechanisms involved in students’ decision making while posing problems.  相似文献   

10.
This paper reports two studies that examined the impact of early algebra learning and teachers’ beliefs on U.S. and Chinese students’ thinking. The first study examined the extent to which U.S. and Chinese students’ selection of solution strategies and representations is related to their opportunity to learn algebra. The second study examined the impact of teachers’ beliefs on their students’ thinking through analyzing U.S. and Chinese teachers’ scoring of student responses. The results of the first study showed that, for the U.S. sample, students who have formally learned algebraic concepts are as likely to use visual representations as those who have not formally learned algebraic concepts in their problem solving. For the Chinese sample, students rarely used visual representations whether or not they had formally learned algebraic concepts. The findings of the second study clearly showed that U.S. and Chinese teachers view students’ responses involving concrete strategies and visual representations differently. Moreover, although both U.S. and Chinese teachers value responses involving more generalized strategies and symbolic representations equally high, Chinese teachers expect 6th graders to use the generalized strategies to solve problems while U.S. teachers do not. The research reported in this paper contributed to our understanding of the differences between U.S. and Chinese students’ mathematical thinking. This research also established the feasibility of using teachers’ scoring of student responses as an alternative and effective way of examining teachers’ beliefs.  相似文献   

11.
Productive mathematical classroom discourse allows students to concentrate on sense making and reasoning; it allows teachers to reflect on students’ understanding and to stimulate mathematical thinking. The focus of the paper is to describe, through classroom vignettes of two teachers, the importance of including all students in classroom discourse and its influence on students’ mathematical thinking. Each classroom vignette illustrates one of four themes that emerged from the classroom discourse: (a) valuing students’ ideas, (b) exploring students’ answers, (c) incorporating students’ background knowledge, and (d) encouraging student-to-student communication. Recommendations for further research on classroom discourse in diverse settings are offered.  相似文献   

12.
This study investigated how 31 sixth-, seventh-, and eighth-grade middle school students who had not previously, nor were currently taking a formal Algebra course, approached word problems of an algebraic nature. Specifically, these algebraic word problems were of the form x + (x + a) + (x + b) = c or ax + bx + cx = d. An examination of students’ understanding of the relationships expressed in the problems and how they used this information to solve problems was conducted. Data included the students’ written responses to problems, field notes of researcher-student interactions while working on the problems, and follow-up interviews. Results showed that students had many informal strategies for solving the problems with systematic guess and check being the most common approach. Analysis of researcher-student interactions while working on the problems revealed ways in which students struggled to engage in the problems. Support mechanisms for students who struggle with these problems are suggested. Finally, implications are provided for drawing upon students’ informal and intuitive knowledge to support the development of algebraic thinking.  相似文献   

13.
This work investigates the relationship between teachers’ mathematical activity and the mathematical activity of their students. By analyzing the classroom video data of mathematicians implementing an inquiry-oriented abstract algebra curriculum I was able to identify a variety of ways in which teachers engaged in mathematical activity in response to the mathematical activity of their students. Further, my analysis considered the interactions between teachers’ mathematical activity and the mathematical activity of their students. This analysis suggests that teachers’ mathematical activity can play a significant role in supporting students’ mathematical development, in that it has the potential to both support students’ mathematical activity and influence the mathematical discourse of the classroom community.  相似文献   

14.
Combinatorial topics have become increasingly prevalent in K-12 and undergraduate curricula, yet research on combinatorics education indicates that students face difficulties when solving counting problems. The research community has not yet addressed students’ ways of thinking at a level that facilitates deeper understanding of how students conceptualize counting problems. To this end, a model of students’ combinatorial thinking was empirically and theoretically developed; it represents a conceptual analysis of students’ thinking related to counting and has been refined through analyzing students’ counting activity. In this paper, the model is presented, and relationships between formulas/expressions, counting processes, and sets of outcomes are elaborated. Additionally, the usefulness and potential explanatory power of the model are demonstrated through examining data both from a study the author conducted, and from existing literature on combinatorics education.  相似文献   

15.
Meaningful learning of formal mathematics in regular classrooms remains a problem in mathematics education. Research shows that instructional approaches in which students work collaboratively on tasks that are tailored to problem solving and reflection can improve students’ learning in experimental classrooms. However, these sequences involve often carefully constructed reinvention route, which do not fit the needs of teachers and students working from conventional curriculum materials. To help to narrow this gap, we developed an intervention—‘shift problem lessons’. The aim of this article is to discuss the design of shift problems and to analyze learning processes occurring when students are working on the tasks. Specifically, we discuss three paradigmatic episodes based on data from a teaching experiment in geometrical proof. The episodes show that is possible to create a micro-learning ecology where regular students are seriously involved in mathematical discussions, ground their mathematical understanding and strengthen their relational framework.  相似文献   

16.
This study investigates students’ conceptual variation and coordination among theoretical and experimental interpretations of probability. In the analysis we follow how Swedish students (12-13 years old) interact with a dice game, specifically designed to offer the students opportunities to elaborate on the logic of sample space, physical/geometrical considerations and experimental evidence when trying to develop their understanding of compound random phenomena.The analytical construct of contextualization was used as a means to provide structure to the qualitative analysis performed. Within the frame of the students’ problem encounters during the game and how they contextualized the solutions of the problems in personal contexts for interpretations, the analysis finds four main forms of appearance, or of limitations in appearance, of conceptual variation and coordination among theoretical and experimental interpretations of probability.  相似文献   

17.
By continuing a contrast with the DNR research program, begun in Harel and Koichu (2010), I discuss several important issues with respect to teaching and learning mathematics that have emerged from our research program which studies learning that occurs through students’ mathematical activity and indicate issues of complementarity between DNR and our research program. I make distinctions about what we mean by inquiring into the mechanisms of conceptual learning and how it differs from work that elucidates steps in the development of a mathematical concept. I argue that the construct of disequilibrium is neither necessary nor sufficient to explain mathematics conceptual learning. I describe an emerging approach to instruction aimed at particular mathematical understandings that fosters reinvention of mathematical concepts without depending on students’ success solving novel problems.  相似文献   

18.
Four seventh grade students participated in a constructivist teaching experiment in which manipulatives within a computer microworld were used to solve fractional reasoning tasks followed by tasks that involve concepts of rate, ratio and proportion. Through a retrospective analysis of video tapes, their thinking processes were analyzed from the perspective of the types of cognitive schemes of operation used as they engaged in the given problem situations. One result of the study indicates that the modifications of the students’ available schemes of operation when solving the fractional reasoning tasks formed a basis for the cognitive schemes of operation used in their solutions of tasks involving proportionality.  相似文献   

19.
In this paper two 10th graders having an accumulated experience on problem-solving ancillary to the concept of area confronted the task to find Pick's formula for a lattice polygon's area. The formula was omitted from the theorem in order for the students to read the theorem as a problem to be solved. Their working is examined and emphasis is given to highlighting the students’ range of systematic approaches to experimentation in the context of problem solving and aspects of control that are reflected in these approaches.  相似文献   

20.
This paper presents a case study, in which we apply and develop theoretical constructs to analyze motivating desires observed in an unconventional, culturally contextualized teacher education course. Participants, Israeli students from several different cultures and backgrounds (pre-service and in-service teachers, Arabs and Jews, religious and secular) together studied geometry through inquiry into geometric ornaments drawn from diverse cultures, and acquired knowledge and skills in multicultural education. To analyze affective behaviors in the course we applied the methodology of engagement structures recently proposed by Goldin and his colleagues. Our study showed that engagement structures were a powerful tool for examining motivating desires of the students. We found that the constructivist ethnomathematical approach highlighted the structures that matched our instructional goals and diminished those related to students’ feelings of dissatisfaction and inequity. We propose a new engagement structure “Acknowledge my culture” to embody motivating desires, arising from multicultural interactions, that foster mathematical learning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号