共查询到20条相似文献,搜索用时 15 毫秒
1.
To investigate the relationship between antimicrobial activities and the formation constants of CuII, NiII and CoII complexes with three Schiff bases, which were obtained by the condensation of 2-pyridinecarboxyaldehyde with DL-alanine, DL-valine and DL-phenylalanine, have been synthesized. Schiff bases and the complexes have been characterized on the basis of elemental analyses, magnetic moments (at ca. 25 °C), molar conductivity, thermal analyses and spectral (i.r., u.v., n.m.r.) studies. The i.r. spectra show that the ligands act in a monovalent bidentate fashion, depending on the metal salt used and the reaction pH = 9, 8 and 7 medium, for CuII, NiII and CoII, respectively. Square-planar, tetrahedral and octahedral structures are proposed for CuII, NiII and CoII, respectively. The protonation constants of the Schiff bases and stability constants of their ML-type complexes have been calculated potentiometrically in aqueous solution at 25 ± 0.1 °C and at 0.1 M KCl ionic strength. Antimicrobial activities of the Schiff bases and the complexes were evaluated for three bacteria (Bacillus subtillis, Staphylococcus aureus, and Escherichia coli) and a yeast (Candida albicans). The structure–activity correlation in Schiff bases and their metal(II) complexes are discussed, based on the effect of their stability contants. 相似文献
2.
Prashanthi Y Kiranmai K Subhashini NJ Shivaraj 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2008,70(1):30-35
The metal complexes of Cu(II), Ni(II) and Co(II) with Schiff bases of 3-(2-hydroxy-3-ethoxybenzylideneamino)-5-methyl isoxazole [HEBMI] and 3-(2-hydroxy-5-nitrobenzylidene amino)-5-methyl isoxazole [HNBMI] which were obtained by the condensation of 3-amino-5-methyl isoxazole with substituted salicylaldehydes have been synthesized. Schiff bases and their complexes have been characterized on the basis of elemental analysis, magnetic moments, molar conductivity, thermal analysis and spectral (IR, UV, NMR and Mass) studies. The spectral data show that these ligands act in a monovalent bidentate fashion, co-ordinating through phenolic oxygen and azomethine nitrogen atoms. Chelates of Co(II), Ni(II) appear to be octahedral and Cu(II) appears to be distorted octahedral. To investigate the relationship between formation constants of binary complexes and antimicrobial activity, the dissociation constants of Schiff bases and stability constants of their binary metal complexes have been determined potentiometrically in aqueous solution at 30+/-1 degrees C and at 0.1 M KNO3 ionic strength and discussed. Antimicrobial activities of the Schiff bases and their complexes were screened. The structure-activity correlation in Schiff bases and their metal(II) complexes are discussed, based on the effect of their stability constants. It is observed that the activity enhances upon complexation and the order of activity is in accordance with stability order of metal ions. 相似文献
3.
《Journal of Saudi Chemical Society》2014,18(1):27-34
A series of metal complexes of Cu(II), Ni(II), Co(II), Fe(III) and Mn(II) have been synthesized with newly synthesized biologically active tridentate ligand. The ligand was synthesized by condensation of dehydroacetic acid (3-acetyl-6-methyl-(2H) pyran-2,4(3H)-dione or DHA), o-phenylene diamine and fluoro benzaldehyde and characterized by elemental analysis, molar conductivity, magnetic susceptibility, thermal analysis, X-ray diffraction, IR, 1H-NMR, UV–Vis spectroscopy and mass spectra. From the analytical data, the stoichiometry of the complexes was found to be 1:2 (metal:ligand) with octahedral geometry. The molar conductance values suggest the non-electrolyte nature of metal complexes. The IR spectral data suggest that the ligand behaves as a dibasic tridentate ligand with ONN donor atoms sequence towards central metal ion. Thermal behaviour (TG/DTA) and kinetic parameters calculated by the Coats–Redfern and Horowitz–Metzger method suggest more ordered activated state in complex formation. To investigate the relationship between stability constants of metal complexes and antimicrobial activity, the dissociation constants of Schiff bases and stability constants of their binary metal complexes have been determined potentiometrically in THF–water (60:40%) solution at 25 ± 1 °C and at 0.1 M NaClO4 ionic strength. The potentiometric study suggests 1:1 and 1:2 complexation. Antibacterial and antifungal activities in vitro were performed against Staphylococcus aureus, Escherichia coli and Aspergillus niger, Trichoderma, respectively. The stability constants of the metal complexes were calculated by the Irving–Rosotti method. A relation between the stability constant and antimicrobial activity of complexes has been discussed. It is observed that the activity enhances upon complexation and the order of antifungal activity is in accordance with stability order of metal ions. 相似文献
4.
Coordination compounds of MnII, CoII, NiII, CuII, ZnII, CdII and HgII ions with o-aminoacetophenone o-hydroxybenzoylhydrazone (AAOHBH) were synthesized and characterized by elemental analyses, molar conductivity, magnetic moments (at ca. 25°C) and spectral (i.r., u.v., n.m.r. and m.s.) studies. The i.r. spectra show that the ligand acts in a monovalent bidentate, neutral bidentate and/or neutral tridentate fashion, depending on the metal salt used and the reaction medium. Tetrahedral structures are proposed for both CoII and NiII complexes and square planar for CuII complexes on the basis of magnetic and spectral evidence. The complex formation in solution was investigated potentiometrically and spectrophotometrically. Spectral studies in solution show that the ligand can be used for the microdetermination of CoII ion within a metal concentration up to 46.3p.p.m. The electrical conductivity of AAOHBH and its metal complexes was determined. The tendency of AAOHBH to form complexes with CoII, NiII, CuII, CdII and HgII ions in 50% aqueous-dioxane was studied by pH measurements.The antimicrobiol activity of AAOHBH and its complexes derived from CoII, NiII and CuII illustrates that the NiII complex seems to be inert towards Escherichia coli and Bacillus subtilis. The antimicrobial activity of the CuII complex was higher against E. coli and lower against B. subtilis than the corresponding organic ligand. The CoII complex has the same activity as the organic ligand against E. coli. 相似文献
5.
《Journal of Coordination Chemistry》2012,65(11):1859-1870
A series of metal complexes of Schiff bases derived from condensation of sulfa-guanidine with 1-benzoylacetone (H2L1), 2-hydroxybenzophenol (H2L2), dibenzoylmethane (H2L3), 5-methylisatine (H2L4), and 1-methylisatine (H2L5) have been synthesized. The complexes are characterized by elemental analysis, molar conductance, magnetic moment measurements, IR, UV–Vis, 1H NMR, and ESR spectra, as well as thermogravimetric analysis. The low molar conductance values indicate the complexes are nonelectrolytes. IR and 1H NMR spectra show that H2L1–H2L5 are coordinated to metal ions by two bidentate centers. Mn(II), Co(II), Ni(II), and Cu(II) complexes display paramagnetic behavior, whereas the Zn(II)-complex was diamagnetic. All studies confirm the formation of an octahedral geometry for [Cu2L1(AcO)2(H2O)6] · 3H2O (1), [Mn2L4(AcO)2(H2O)6] · 2H2O (6), [Ni2L4(AcO)2(H2O)6] · 2H2O (8), a tetrahedral geometry for [Cu2L2(AcO)2(H2O)2] (2), [Cu2(L4)2] (4), [Co2(L4)2] · 2H2O (7) and [ZnHL4(AcO)(H2O)] · 2H2O (9) and a trigonal bipyramid geometry for [Cu2L3(AcO)2(H2O)4] (3) and [Cu2HL5(AcO)3(H2O)3] · H2O (5). H2L4 was most effective on Gram negative, Gram positive bacteria, and fungi (diameters inhibition zone ranged between 10.5–27.5 mm) after 24 and 48 h, respectively. Complex 8 showed moderate antimicrobial activity. Its minimum inhibitory concentration (MIC) against Escherichia coli, Bacillus subtilis, Candida albicans and Aspargllus flavas was 20 mg L–1. The compound proved to be of moderate toxicity and its LD50 was 20 mg L–1. 相似文献
6.
Manganese(III) complexes derived from the bis-Schiff bases N,N′-bis(5-fluorosalicylidene)-1,2-diaminoethane (H2La) and 3,4-bis(2-hydroxybenzylideneamino)pyridine (H2Lb), respectively, have been prepared and characterized by elemental analyses, IR, and single crystal X-ray crystallographic determination (CIF files CCDC nos. 997243 (I), 995896 (II)). The crystal of [MnLa(μ1,3-N3)] n (I) is orthorhombic: space group Pca21, a = 10.723(1), b = 13.430(1), c = 11.112(1) Å, V = 1600.2(2) Å3, Z = 4, R 1 = 0.0264, wR 2 = 0.0649. The crystal of [MnLb(N3)(CH3OH)] (II) is monoclinic: space group C2/c, a = 22.792(1), b = 14.4442(7), c = 12.8637(6) Å, β = 119.262(1)°, V = 3694.5(3) Å3, Z = 8, R 1 = 0.0367, wR 2 = 0.0776. The bis-Schiff base ligands coordinate to the metal atoms through phenolate O and imine N atoms. Each metal atom in the complexes is in octahedral coordination. The effects of the complexes on the antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans were studied. 相似文献
7.
8.
《Journal of Coordination Chemistry》2012,65(9):1619-1628
A Schiff base (L) is prepared by condensation of cuminaldehyde and L-histidine, and characterized by elemental analysis, IR, UV-Vis, 1H-NMR, 13C-NMR, and mass spectra. Co(II), Ni(II), Cu(II), and Zn(II) complexes of this Schiff-base ligand are synthesized and characterized by elemental analysis, molar conductance, mass, IR, electronic spectra, magnetic moment, electron spin resonance (ESR), CV, TG/DTA, powder XRD, and SEM. The conductance data indicate that all the complexes are 1 : 1 electrolytes. IR data reveal that the Schiff base is a tridentate monobasic donor, coordinating through azomethine nitrogen, imidazole nitrogen, and carboxylato oxygen. The electronic spectral data and magnetic measurements suggest that Co(II) and Ni(II) complexes are tetrahedral, while Cu(II) complex has distorted square planar geometry. XRD and SEM show that Co(II), Cu(II), and Zn(II) complexes have crystalline nature, while the Ni(II) complex is amorphous and the particles are in nanocrystalline phase. The in vitro biological activities of the synthesized compounds were tested against the bacterial species, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, and Staphylococcus aureus; and fungal species, Aspergillus niger, Aspergillus flavus, and Candida albicans by the disc diffusion method. The biological study indicates that complexes exhibit more activity than the ligand. The nuclease activity of the ligand and its complexes are assayed on CT DNA using gel electrophoresis in the presence and the absence of H2O2. The Cu(II) complex shows increased nuclease activity in the presence of an oxidant when compared to the ligand, Co(II) and Ni(II) complexes. 相似文献
9.
S. Shahzadi S. Ali S. K. Sharma K. Qanungo 《Journal of the Iranian Chemical Society》2010,7(2):419-427
The reactions between cephradine and VOSO4.3H2O in 1:1, 1:2 and 1:3 molar ratios in methanol were investigated at room temperature, 0 °C and ?10 °C. In various pH conditions, the different complexes formulated as VO(H2O)3L2?, VO(H2O)L2 2? and VL3 ? were formed by titration of VOSO4.3H2O and cephradine with NaOH. These complexes were characterized by elemental analysis and IR spectroscopy. IR spectra of all the complexes show the disappearance of ν(O-H) band of cephradine, which confirms complexation. Estimation of vanadium in the complexes was carried out by ICP-AES. The stability constants of each complex were calculated on the basis of which a general mechanism is hereby proposed with regard to the formation of these complexes. In complex (1) the cephradine ligand bind in bidentate [O,O] fashion together with a terminal oxo ligand and water molecules complete the metal coordination sphere. In complex (2) the cephradine ligands bind in bis-bidentate [O,O] fashion and the axial positions are occupied by the oxo ligand and a trans-water molecule. Biological screening tests show significant antibacterial and anti-fungal activities against various bacterial and fungal strains. 相似文献
10.
Hitesh M. Parekh Saurabh R. Mehta M. N. Patel 《Russian Journal of Inorganic Chemistry》2006,51(1):67-72
Mixed-ligand complexes of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) have been prepared with biologically active Schiff
bases, viz. potassium salt of o-hydroxyacetophenoneglycine [KHL] and bis(benzylidene)ethylenediamine [A1] or thiophene-o-carboxaldene-p-toluidine [A2]. The synthesized mixed-ligand complexes have been characterized on the basis of elemental analysis, thermogravimetric analysis,
magnetic measurements, and electronic and infrared spectra. The mixed-ligand complexes show higher antifungal activity as
compared to the free ligands, metal salts, and the control (dimethylsulfoxide) but moderate activity as compared to the standard
fungicides (bavistin and emcarb).
This text was submitted by the authors in English. 相似文献
11.
12.
Two new Schiff base ligands (L1, L2) have been prepared from the reaction of 2,6-diacetylpyridine and 2-pyridinecarboxyaldehyde with 4-amino-2,3-dimethyl-1-phenyl-3-pyrozolin-5-on,
and their Co(II), Cu(II), Ni(II), Mn(II), and Cr(III) metal complexes have also been prepared. The complexes are formed by
coordination of N and O atoms of the ligands. Their structures were characterized by physico-chemical and spectroscopic methods.
The analytical data shows that the metal to ligand ratio in the Schiff base complexes is 1:2. The Schiff base ligands and
all complexes were evaluated for their in vitro antibacterial and antifungal activities by the disc diffusion method. In addition,
the genotoxic properties of the ligands were studied. 相似文献
13.
Ni(II) complexes were prepared by the reactions of 3,5-di-tert-butylsalicylaldehyde-S-methylisothiosemicarbazone (L) with
salicylaldehyde or 2-hydroxy-1-naphthaldehyde in the presence of NiCl2·6H2O. The complexes and starting material L were characterized by physic-chemical analysis and spectroscopic techniques such
as 1HNMR, 13CNMR, IR and UV–VIS. Antimicrobial activity studies of L and the two complexes standards strains of bacteria (Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), Bacillus cereus, Enterococcus faecalis, Streptococcus pneumoniae, Listeria monocytogenes, Escherichia coli, Salmonella typhi and Candida albicans) and 22 clinically isolated microorganisms, including multidrug resistant pathogenic microorganisms, were carried out. The
free thiosemicarbazone L showed a significant inhibition of the growth all of Gram-positive bacteria tested. 相似文献
14.
Tümer M Ekinci D Tümer F Bulut A 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2007,67(3-4):916-929
In this study, we synthesized the amine compound 2-(2-aminoethyliminomethyl)phenol (H(3)A) as the starting material, and then we prepared the polydentate Schiff base ligands from the reactions of the amine compound (H(3)A) with phtaldialdehyde (H(2)L), 4-methyl-2,6-di-formlyphenol (H(3)L(1)) and 4-t-butyl-2,6-di-formylphenol (H(3)L(2)) in the ethanol solution. Moreover, the complexes Cd(II), Cu(II), Co(II), Ni(II), Zn(II) and Sn(II) of the ligands H(2)L, H(3)L(1) and H(3)L(2) have been prepared. All compounds have been characterized by the analytical and spectroscopic methods. In addition, the magnetic susceptibility and molar conductance measurements have been made. The catalytic properties of the mono- and binuclear Co(II) and Cu(II) complexes have been studied on the 3,5-di-tert-butylcatechol (3,5-DTBC) and ascorbic acid (aa) as a substrate. The oxidative C-C coupling properties of the Co(II) and Cu(II) complexes have been investigated on the sterically hindered 2,6-di-tert-butylphenol (dtbp). The antimicrobial activity properties of the ligands and their mono- and binuclear complexes have been studied against the bacteria and fungi. The results have been compared to the antibacterial and fungi drugs. The TGA curves show that the decomposition takes place in three steps for all complexes. Electrochemical properties of the complexes Cu(II) and Ni(II) have been investigated for the first time in acetonitrile by cyclic voltammetry. 相似文献
15.
16.
Ummuhan Solmaz Gun Binzet Omer Celik Gulten Kavak Balci Aylin Dogen 《Journal of Coordination Chemistry》2018,71(2):200-218
N,N-Di-R-N′-(4-chlorobenzoyl)thiourea (Di-R: diethyl, di-n-propyl, di-n-butyl and diphenyl) ligands (HL1–4) and their Pt(II) complexes (cis-[Pt(L1–4-S,O)2]) have been synthesized and structurally characterized by elemental analyses, FT-IR and NMR spectroscopy. HL2 ligand and cis-[Pt(L4-S,O)2] metal complex have been also characterized by a single-crystal X-ray diffraction study. HL2, C14H19ClN2OS, crystallizes in the monoclinic space group P21/n (no. 14), with Z = 4, and unit cell parameters, a = 11.1405(16) Å, b = 9.7015(12) Å, c = 14.790(2) Å, β = 106.547(7)°. The cis-[Pt(L4-S,O)2], C40H28Cl2N4O2PtS2: triclinic, space group P-1 (no. 2), a = 8.9919(3) Å, b = 14.7159(6) Å, c = 15.7954(6) Å, α = 113.9317(18)°, β = 97.4490(18)°, and γ = 105.0492(16)°. Single crystal analysis of complex, cis-[Pt(L1–4-S,O)2], revealed that a square planar coordination geometry is formed around the platinum atom by two sulfur and two oxygen atoms of the related ligands, which are in a cis configuration. In addition, the thiourea derivative ligands and their complexes were evaluated for both their in-vitro antibacterial and antifungal activity. The results have been reported, explained, and compared with fluconazole and ampicillin, used as reference drugs. 相似文献
17.
A. P. Mishra R. K. Mishra Mrituanjay D. Pandey 《Russian Journal of Inorganic Chemistry》2011,56(11):1757-1764
The complexes of tailor made ligands with life essential metal ions may be an emerging area to answer the problems of multi-drug
resistance (MDR). The coordination complexes of VO(II), Co(II), Ni(II) and Cu(II) with the Schiff bases derived from 3-bromobenzaldehyde/3-chlorobenzaldehyde
with 2-aminophenol have been synthesized and characterized by elemental analysis, molar conductance, electronic spectra, FT-IR,
ESR, FAB mass, thermal and magnetic susceptibility measurements, FAB mass and thermal data show degradation of complexes.
Both the ligands behave as bidentate coordinating through O and N donor. The complexes exhibit coordination number 4, 5 or
6. X-ray powder diffraction data shows that four (2, 3, 6 and 7) complexes are crystallized in tetragonal system. The in vitro biological screening effects of the investigated compounds
were tested against the bacteria Escherichia coli, Staphylococcus aureus and Streptococcus fecalis and the fungi Aspergillus niger, Trichoderma polysporum and Candida albicans by serial dilution method. A comparative study of the MIC values of the Schiff base and their Co(II) (6) and Cu(II) (8) complexes, indicates that the metal complexes exhibit higher or lower antimicrobial activity than the free ligand (L2). 相似文献
18.
《Journal of Coordination Chemistry》2012,65(17):2767-2780
Heterobimetallic complexes of Cu[Tl(SCN)2]2 ·; L (where L?=?acetophenone benzoylhydrazone(abh), acetophenone isonicotinoyl hydrazone(ainh), acetophenone salicyloylhydrazone(ash), acetophenone anthraniloyl hydrazone(aah), p-hydroxy acetophenone benzoylhydrazone (phabh), p-hydroxy acetophenone isonicotinoyl hydrazone (phainh), p-hydroxy acetophenone salicyloylhydrazone(phash) and p-hydroxy acetophenone anthraniloyl hydrazone(phaah) were synthesized and characterized. Electronic spectra and μeff values suggest a distorted octahedral environment around copper(II). SCN groups bridge between two metal centers and the ligands are coordinated through >C=O and >C=N–groups. Thermal studies (TGA and DTA) on Cu[Tl(SCN)2]2?·?ainh indicate multi step decomposition of both endothermic and exothermic nature. ESR data show axial spectra for all the complexes and d x²???y 2 as the ground state. Powder X-ray diffraction parameters for some of the complexes correspond to orthorhombic crystal lattice. The complexes show significant antifungal activity against Rizoctonia sp. and Stemphylium sp. and moderate antibacterial activity against Clostridium sp. and Pseudomonas sp. The activity increases at higher concentration of the compound. 相似文献
19.
Cobalt(II) complexes of the type Co[Cu(NCS)2]2 · L, where L is acetophenonebenzoylhydrazone (Abh), acetophenoneisonicotinoylhydrazone (Ainh), acetophenonesalicyloylhydrazone
(Ash), acetophenoneanthraniloylhydrazone (Aah), p-hydroxyacetophenonebenzoylhydrazone (Phabh), p-hydroxyacetophenoneisonicotinoylhydrazone (Phainh), p-hydroxyacetophenonesalicyloylhydrazone (Phash), and p-hydroxyacetophenoneanthraniloylhydrazone (Phaah) were synthesized and characterized by elemental analyses, molar conductance,
magnetic moments, electronic and IR spectra, and X-ray diffraction studies. The complexes are insoluble in common organic
solvents and are non-electrolytes. These complexes are coordinated through the >C=O and >C=N groups of the hydrazone ligands.
The magnetic moments and electronic spectra suggest a spin-free octahedral geometry around Co(II). The X-ray diffraction parameters
(a, b, c) for Co[Cu(SCN)2]2 · Ainh and Co[Cu(SCN)2]2 · Phabh correspond to orthorhombic and tetragonal crystal lattices, respectively. The complexes show a fair antifungal and
antibacterial activity against a number of fungi and bacteria. The activity increases with increasing concentration of the
compounds.
The text was submitted by the authors in English. 相似文献
20.
《印度化学会志》2023,100(6):100997
Schiff bases are versatile compounds for the design of the ternary complex. An experiment has been made to synthesize two novel complexes of Co(II). Here, The primary ligand, L1 was prepared by the condensation reaction of o-toluidine with 3-formyl chromone or o-toluidine with 3- methylquinolinecarbaldehyde and the secondary ligand which was 8-Hydroxyquinoline. These potent complexes were prepared by condensation of primary and secondary ligands with Cobalt salt. The reaction was performed through the conventional reflux method. The newly synthesized chromone and quinoline derived novel compounds are proposed to have significant antimicrobial activity against selective strains of bacteria and fungi. This can be great opportunity for researchers and the use of biological applications of the synthesized novel compounds can be a part of unique field of research for the future to be focus. Chromone derivative has great biological diversity in the medicinal and pharmaceutical fields. Along with these compounds, quinoline derivatives also have antibacterial, and antifungal activities. The synthesized ligand and complex were characterized by elemental analysis, molecular weight determination, magnetic moment measurement, melting point determination, spectral analysis (IR, UV–Vis, 1H NMR, Mass, etc.), and X-ray diffraction. The synthesized complexes were paramagnetic and non-electrolytic in nature. The Uv–Vis, FTIR, NMR, and Mass spectra suggest the octahedral geometry of the complexes. The synthesized compounds were further evaluated for biological studies against selected bacterial and fungal strains. It has been observed that the antimicrobial activity of most of the complexes are better than that of ligands. 相似文献