首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The speckle tomography technique is used for reconstructing both large-scale structures in turbulent flows and the microstructure of turbulence. The technique is based on multi-projectional line-of-sight speckle photography measurements with a subsequent computer-assisted tomographic reconstruction of the interior structure of the flowfield. The large-scale structure is reconstructed using the Radon integral equation, and the microstructure is analysed using a statistical approach and a novel Erbeck-Merzkirch integral transform. Digital speckle photography and speckle tomography methods are described. Numerical simulation of the optical technique is performed using digital ray tracing through a turbulent flowfield. The methods are illustrated by the 3D "averaged" temperature fields in turbulent convective flows obtained earlier and by the recent reconstruction of 3D correlation functions of density variations in turbulent flows. Local values of turbulence (Kolmogorov) microscale are evaluated using these correlation functions and the Erbeck-Merzkirch integral transform The precision of the reconstruction and the spatial resolution achieved are analysed.  相似文献   

2.
Optical tomography is applied to the speckle photographic measurement of an asymmetric flow field with variable fluid density. The convolution back projection algorithm is used for obtaining the 3-D density distribution. Noise in the experimental data is reduced by spline smoothing. The method is verified with a steady, laminar, axisymmetric helium jet exhausting vertically into the ambient air, and then applied to a non-axisymmetric helium jet for determining the helium concentration. It is found that speckle photographic recordings are very adequate for tomographic reconstruction, because they provide a high number of data points from each projection. The influence of the limited number of projections on the reconstruction quality is particularly investigated. Dedicated to Professor Dr.-Ing. J. Zierep on the occasion of his 60th birthday  相似文献   

3.
Wave motion in an elastic layer has been analyzed conventionally either in terms of normal (discrete and continuous) mode spectra or in terms of ordinary or generalized ray fields. Either of these representations is inconvenient for describing the motion over the entire range of observations from early to late arrivals. A recently developed hybrid formulation, wherein modal fields, ray fields and a remainder are combined according to specified criteria within a single rigorous framework, overcomes these difficulties, Combinations may be chosen that ensure smooth passage from the ray phase at early times to the modal phase at later times. The method is illustrated here on the two-dimensional time-dependent SH Green's function for a homogeneous sediment layer above a higher velocity homogeneous semi-infinite bedrock, with the source located in the sediment. The hybrid fields may include various combinations of trapped modes, leaky modes, trapped rays, leaky rays, and lateral rays (head waves). This study complements an earlier investigation wherein the source was located in the bedrock.  相似文献   

4.
This paper presents a simulation-based analysis of the effect of a reflecting surface on aeroacoustic Time-Reversal (TR) source localization/characterization and compares the results of TR with those obtained using cross-spectral Conventional Beamforming (CB). The TR technique is shown to require the use of at least two line arrays of microphones to accurately characterize the nature of aeroacoustic sources. This work, however, shows that in the presence of a rigid surface, only one line array of microphones is sufficient to accurately localize and characterize idealized aeroacoustic sources. Forward simulations were carried out using the 2-D Linearized Euler Equations on a rectangular domain with a rigid bottom boundary (modeling a 2-D semi-infinite space) for the test-cases of stationary idealized tonal aeroacoustic (monopole, dipole and lateral quadrupole) sources located in a fully-developed mean shear flow field wherein the acoustic pressure time–history was stored at the computational boundaries. A set of TR simulations are implemented that show for each test-case that only the top line array is required to accurately characterize the idealized aeroacoustic sources in the presence of a reflecting bottom boundary, thereby suggesting the redundancy of acoustic pressure measurement at the rigid surface. The test-case of convecting (moving) idealized aeroacoustic source was also considered and the TR simulation using only the top line array in the presence of reflecting bottom boundary was able to accurately retrieve the source trajectory and simultaneously characterize its nature. This numerical experiment demonstrates in principle that when a rigid surface is mounted on the floor of an Anechoic Wind Tunnel, the use of only one (top) line array of microphones should be sufficient to characterize the nature and location of experimental flow-induced noise source. Acoustic source maps were also obtained using the CB method based on the Method of Images (to model the reflecting surface) and incorporation of the Ray-Tracing algorithm necessary to account for the effect of mean flow. The CB results were found to be highly comparable to those obtained using TR for the test-cases of non-convecting sources; thereby demonstrating the conceptual equivalence of the Method of Images and directly implementing the rigid-wall condition during TR for source localization/characterization.  相似文献   

5.
张恒  缪泓 《实验力学》2012,27(2):171-177
提出一种形貌测量方法,从未标定序列图中同时提取出特征点的三维坐标和摄像机的运动矩阵,实现对目标物体的三维测量。首先用齐次坐标表达了空间点的投影变换矩阵,并根据该矩阵推导出投影比例式,运用投影深度和投影矩阵之间的循环相关性进行迭代运算,得到比普通双目视觉更加精确的深度数据。其次对分解得到的摄像机运动矩阵和空间点坐标施加度量约束。运用基于因式分解的归一化算法,恢复出欧氏空间里的摄像机运动矩阵和空间点坐标。基于这种方法,实现了曲面标记点的坐标测量,得到了三维形貌数据,误差小于0.16mm。  相似文献   

6.
This paper presents a hybrid finite volume/finite element method for the incompressible generalized Newtonian fluid flow (Power-Law model). The collocated (i.e. non-staggered) arrangement of variables is used on the unstructured triangular grids, and a fractional step projection method is applied for the velocity-pressure coupling. The cell-centered finite volume method is employed to discretize the momentum equation and the vertex-based finite element for the pressure Poisson equation. The momentum interpolation method is used to suppress unphysical pressure wiggles. Numerical experiments demonstrate that the current hybrid scheme has second order accuracy in both space and time. Results on flows in the lid-driven cavity and between parallel walls for Newtonian and Power-Law models are also in good agreement with the published solutions.  相似文献   

7.
Modified incompressible SPH method for simulating free surface problems   总被引:1,自引:0,他引:1  
An incompressible smoothed particle hydrodynamics (I-SPH) formulation is presented to simulate free surface incompressible fluid problems. The governing equations are mass and momentum conservation that are solved in a Lagrangian form using a two-step fractional method. In the first step, velocity field is computed without enforcing incompressibility. In the second step, a Poisson equation of pressure is used to satisfy incompressibility condition. The source term in the Poisson equation for the pressure is approximated, based on the SPH continuity equation, by an interpolation summation involving the relative velocities between a reference particle and its neighboring particles. A new form of source term for the Poisson equation is proposed and also a modified Poisson equation of pressure is used to satisfy incompressibility condition of free surface particles. By employing these corrections, the stability and accuracy of SPH method are improved. In order to show the ability of SPH method to simulate fluid mechanical problems, this method is used to simulate four test problems such as 2-D dam-break and wave propagation.  相似文献   

8.
9.
In many simulations of flows transporting a discrete phase (droplets or particles), point sources are followed numerically in the Lagrangian context over an Eulerian mesh storing the continuous phase variables. The projection of the properties of the moving sources over the Eulerian nodes requires interpolations, which may drastically reduce the overall accuracy of the algorithm and alter the flow physics. From the analytical solution of a scalar field downstream of a source, it is shown that the widely used Lagrange/Euler projection, constructed from the regressive normalized distance between the point source position and the nodes cell, provides results very close to an approximate Gaussian filtering of the exact solution. Then, an approximate deconvolution is discussed to allow for better estimating the Eulerian scalar field.  相似文献   

10.
This paper describes the application of a two-beam X-ray computed tomography (CT) system to multiphase (gas–oil–water) flow measurement. Two high-voltage (160 keV) X-ray sources are used to penetrate a 4-in. (101.6 mm ID) pipeline. A rotating filter wheel mechanism is employed to alternately “harden” and “soften” the X-ray spectra to provide discrimination between the three phases. Because this system offers only two projections, conventional back-projection algorithms are ineffective and thus a new reconstruction technique has been developed. A matrix equation is formed, to which additional “smoothing equations” are added to compensate for the lack of projection data. The tomographic result is obtained by computing an inverse matrix. This is a one-off computation and the inverse is stored for repeated use; reconstructed images from synthesized data demonstrate the effectiveness of this technique. Three-phase tomographic images of a horizontal slug flow are presented, which clearly show the mixing of oil and water layers within the slug body. The relevance of this work to the offshore oil and gas industry is summarized.  相似文献   

11.
The Poisson equation for pressure, together with the evolutions equations for the velocity gradients, reveals the role of vorticity in generation of pressure sources. Specifically, it was shown how a pressure field created by a local source, acting on nearby vorticity, would create new pressure sources. It was further established that a moving pressure field, which moves with the velocity of its source, but extends well beyond the source location, could lead to generation of fast and slow streaks as wells as contribute to formation of flow structures in the wall region. These processes, which are part of central mechanisms of maintenance of turbulence, suggest that turbulence could be self-sustaining only if the perturbation pressure force could overcome the diffusion effects; the value of friction Reynolds number reflects the balance between the two.  相似文献   

12.
近年来随着核能及其核装备的发展,辐照环境下高能粒子对润滑材料服役行为的影响受到越来越多的关注. 本研究利用自行设计研制的磁控溅射系统制备a-C: H润滑薄膜,并对其进行伽马 (γ) 辐照处理. 考察γ辐照康普顿效应对a-C: H薄膜微观组织、力学性能和摩擦学性能的影响. 结果表明:经γ辐照后a-C: H薄膜存在由sp2杂化C原子结构向sp3杂化C原子结构转变的趋势,且辐照使得C-H键发生断裂,薄膜内H原子的键合能降低. 伽马辐照使得a-C: H薄膜的纳米机械性能显著提高,辐照样品的残余应力也随辐照剂量呈增加趋势. 此外,γ辐照也使得a-C: H薄膜的摩擦系数和磨损率轻微增加. 综合分析可知,γ辐照在测试剂量范围内对a-C: H薄膜的摩擦性能影响有限,但辐照诱发应力的增加是限制其在核环境中应用的主要因素.   相似文献   

13.
《力学快报》2022,12(5):100362
When using the projection method (or fractional step method) to solve the incompressible Navier-Stokes equations, the projection step involves solving a large-scale pressure Poisson equation (PPE), which is computationally expensive and time-consuming. In this study, a machine learning based method is proposed to solve the large-scale PPE. An machine learning (ML)-block is used to completely or partially (if not sufficiently accurate) replace the traditional PPE iterative solver thus accelerating the solution of the incompressible Navier-Stokes equations. The ML-block is designed as a multi-scale graph neural network (GNN) framework, in which the original high-resolution graph corresponds to the discrete grids of the solution domain, graphs with the same resolution are connected by graph convolution operation, and graphs with different resolutions are connected by down/up prolongation operation. The well trained ML-block will act as a general-purpose PPE solver for a certain kind of flow problems. The proposed method is verified via solving two-dimensional Kolmogorov flows (Re = 1000 and Re = 5000) with different source terms. On the premise of achieving a specified high precision (ML-block partially replaces the traditional iterative solver), the ML-block provides a better initial iteration value for the traditional iterative solver, which greatly reduces the number of iterations of the traditional iterative solver and speeds up the solution of the PPE. Numerical experiments show that the ML-block has great advantages in accelerating the solving of the Navier-Stokes equations while ensuring high accuracy.  相似文献   

14.
This study proposes an elastodynamic time-reversal imaging method for the shape reconstruction of flaws with the traction-free boundary. The proposed method is a generalization of the synthetic aperture focusing technique (SAFT) implemented with the aid of time-reversal back-propagation computation. The reconstruction formula is derived from the boundary condition applied on the flaw boundary without using a diffraction theory yielding an inherently normalized objective function. No restriction is imposed on the wave source or the material properties as long as the wave medium is linearly elastic and lossless. There are two major advantages with the proposed method. First, it is free from ray tracing. The method can thus work with an arbitrary source and the wave modes including inhomogeneous waves. Second, signal conditioning is not required to focus a scattered field to the correct location in the reconstructed image. Numerical examples are presented to demonstrate the performance and benefits of the proposed method. In the numerical examples, the shape of cavities and cracks in an elastic layer is reconstructed from synthetic data. The results show that the method works well with the reverberating incident fields in which inhomogeneous and body waves coexist. Also demonstrated is that the curvature of the cavities is resolved well at the scale of the incident wave length. Through the numerical examples, the method is shown to be a versatile imaging method potentially useful for ultrasonic nondestructive characterization of small flaws.  相似文献   

15.
Certain deterministic nonlinear systems may show chaotic behavior. We consider the motion of qualitative information and the practicalities of extracting a part from chaotic experimental data. Our approach based on a theorem of Takens draws on the ideas from the generalized theory of information known as singular system analysis. We illustrate this technique by numerical data from the chaotic region of the chaotic experimental data. The method of the singular-value decomposition is used to calculate the eigenvalues of embedding space matrix. The corresponding concrete algorithm to calculate eigenvectors and to obtain the basis of embedding vector space is proposed in this paper. The projection on the orthogonal basis generated by eigenvectors of timeseries data and concrete paradigm are also provided here. Meanwhile the state space reconstruction technology of different kinds of chaotic data obtained from dynamical system has also been discussed in detail. The project supported by the National Natural Science Foundation of China (19672043)  相似文献   

16.
The Godunov‐projection method is implemented on a system of overlapping structured grids for solving the time‐dependent incompressible Navier–Stokes equations. This projection method uses a second‐order fractional step scheme in which the momentum equation is solved to obtain the intermediate velocity field which is then projected on to the space of divergence‐free vector fields. The Godunov procedure is applied to estimate the non‐linear convective term in order to provide a robust discretization of this terms at high Reynolds number. In order to obtain the pressure field, a separate procedure is applied in this modified Godunov‐projection method, where the pressure Poisson equation is solved. Overlapping grids are used to discretize the flow domain, as they offer the flexibility of simplifying the grid generation around complex geometrical domains. This combination of projection method and overlapping grid is also parallelized and reasonable parallel efficiency is achieved. Numerical results are presented to demonstrate the performance of this combination of the Godunov‐projection method and the overlapping grid. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
An innovative computational model, developed to simulate high‐Reynolds number flow past circular cylinders in two‐dimensional incompressible viscous flows in external flow fields is described in this paper. The model, based on transient Navier–Stokes equations, can solve the infinite boundary value problems by extracting the boundary effects on a specified finite computational domain, using the projection method. The pressure is assumed to be zero at infinite boundary and the external flow field is simulated using a direct boundary element method (BEM) by solving a pressure Poisson equation. A three‐step finite element method (FEM) is used to solve the momentum equations of the flow. The present model is applied to simulate high‐Reynolds number flow past a single circular cylinder and flow past two cylinders in which one acts as a control cylinder. The simulation results are compared with experimental data and other numerical models and are found to be feasible and satisfactory. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
Computed tomographic X-ray velocimetry has been developed for simultaneous three-dimensional measurement of flow and vessel geometry. The technique uses cross-correlation functions calculated from X-ray projection image pairs acquired at multiple viewing angles to tomographically reconstruct the flow through opaque objects with high resolution. The reconstruction is performed using an iterative, least squares approach. The simultaneous measurement of the object’s structure is performed with a limited projection tomography method. An extensive parametric study using Monte Carlo simulation reveals accurate measurements with as few as 3 projection angles, and a minimum required scan angle of only 30°. When using a single/source detector system, the technique is limited to measurement of periodic or steady flow fields; however, with the use of a multiple source/detector system, instantaneous measurement will be possible. Synchrotron experiments are conducted to demonstrate the simultaneous measurement of structure and flow in a complex geometry with strong three-dimensionality. The technique will find applications in biological flow measurement, and also in engineering applications where optical access is limited, such as in mineral processing.  相似文献   

19.
根据投影浸入边界法分步投影求解的特点,同时针对压力泊松方程离散后的大型稀疏线性方程组是非奇异非对称的特点,结合开源函数库UMFPACK,在传递线性方程组的系数矩阵和右端向量时,采用函数库Eigen将系数矩阵的数据结构改写优化,大大降低了存储空间,实现对高维大型稀疏线性方程组的快速求解,同时求解保持良好的稳定性。本文首先利用一具有解析解的数值算例验证了求解泊松方程数值方法的准确性和网格依赖性,进而利用VC++编写投影浸入边界法的数值计算程序,以单圆柱绕流为基准数值算例,通过与其他文献和实验结果的对比,验证了投影浸入边界法数值计算结果的可靠性,并进一步分析了不同雷诺数下圆柱绕流的流场结构特征和尾涡结构的动态演化过程。  相似文献   

20.
In the paper, discontinuous Galerkin method is applied to simulation of incompressible free round turbulent jet using large eddy simulation with eddy viscosity approach. The solution algorithm is based on the classical projection method, but instead of the solution of the Poisson equation, a parabolic equation is advanced in pseudo‐time, which provides the pressure field ensuring the proper pressure–velocity coupling. For time and pseudo‐time integration, explicit Runge–Kutta method is employed. The computational meshes consist of hexahedral elements with flat faces. Within a given finite element, all flow variables are expressed with modal expansions of the same order (including velocity and pressure). Discretisation of the viscous terms in the Navier–Stokes equations and Laplacian in the Poisson equation is stabilised with mixed finite element approach. The correctness of the solution algorithm is verified in a commonly used test case of laminar flow in 3D lid‐driven cavity. The results of computations of the free jet are compared with experimental and numerical reference data, the latter obtained from the high‐order pseudospectral code. The statistics of centerline flow velocity – mean velocity and its fluctuations – show satisfactory agreement with the reference data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号