首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fu-Sheng W  Pei-Hua Q  Nai-Kui S  Fang Y 《Talanta》1981,28(3):189-191
A simple, selective and highly sensitive procedure for spectrophotometric determination of nickel has been developed. At pH 5.5, nickel reacts with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol in water-ethanol medium to form a red-violet complex which has two absorption maxima, at 520 and 56Onm. The molar absorptivity at 56Onm is 1.26 x 10(5) l.mole(-1).cm(-1). Beer's law is obeyed for 0-15 mug of nickel. Nickel in aluminium alloys and electroplating waste-water has been determined by this method.  相似文献   

2.
Rathaiah GV  Eshwar MC 《Talanta》1988,35(6):502-504
Zirconium reacts with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol in the pH range 3.8-5.8 to form a red chelate that is soluble in methanol-water mixtures. The absorbance of the 1:3 complex obeys Beer's law over the zirconium concentration range 0.02-0.44 mug/ml and has a molar absorptivity of 1.54 x 10(5) 1.mole(-1). cm(-1) at 585 nm. The formation constant is log beta(3) = 16.15. Of 59 species studied, only EDTA, Ga, In, Ti, Hf and V(V) interfere seriously.  相似文献   

3.
Tanaka S  Sugawara K  Taga M 《Talanta》1990,37(10):1001-1005
The voltammetric determination of copper(II), based on adsorptive accumulation of the Cu(II)-2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (S-Br-PADAP) complex on a hanging mercury drop electrode, is reported. The complex can be accumulated at the electrode at constant potential in 0.1M ammonium nitrate/ammonia buffer solution, and its reduction wave observed by scanning the potential in the negative direction, in the differential pulse mode. The calibration graph for copper is linear over the range 0.05-0.5muM, with accumulation for 5 min at -0.20 V. The adsorption of the complex is discussed and compared with that of copper complexes with several other pyridylazo derivatives.  相似文献   

4.
The complex of the reagent 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) with Bi(III) has been studied. The composition and stability of this complex have been determined. An analytical method for the spectrophotometric determination of Bi(III) using its complex with 5-Br-PADAP has been developed. Variables influencing the method such as pH, wavelength, and time have been studied. The limitations of this method and the effect of interfering ions have been investigated. Comparison of this method with other methods cited in the literature for the determination of Bi(III) is also included.  相似文献   

5.
The complex of cadmium with the reagent 2-(-5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) has been studied. The composition, stability constant, and free energy change of formation of the complex have been determined. A sensitive spectrophotometric method for the determination of cadmium has been developed and applied for a range of concentration of 0.4–4.0 μg/ml cadmium using the complex Cd-5-Br-PADAP. The optimum conditions for maximum sensitivity of determination such as standing time, pH, wavelength, and order of addition have been determined. The effect of foreign ions on this method has been also studied.  相似文献   

6.
Summary Sensitive extraction-spectrophotometric procedures are described for the complexes of Cu(II), Zn(II), Cd(II) and Hg(II) with 5-Br-PADAP using chloroform as solvent. Optimal conditions have been established for the quantitative extraction of the metal chelates and their composition and optical characteristics have been determined as well. The conditional extraction constants amount logK ex=10, the molar absorptivities of the complexes being 105 l·mole–1·cm–1. Job's method and equilibrium shift method indicate the molar ratios M5-Br-PADAP=12.
Spektralphotometrische Bestimmung von Spuren Cu(II), Zn(II), Cd(II) und Hg(II) mit 2-(5-Bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP)
Zusammenfassung Einfache und empfindliche Methoden zur extraktionsspektralphotometrischen Bestimmung von Spuren Cu(II), Zn(II), Cd(II) und Hg(II) mit 5-Br-PADAP wurden beschrieben. Chloroform wurde als Extraktionsmittel verwendet. Die optimalen Bedingungen für die quantitative Extraktion der Metallchelate wurden ermittelt und deren Zusammensetzung bestimmt. Die Stabilitätskonstanten haben hohe Werte (logK ex=10), die molare Absorption der Komplexe beträgt 1051·mol–1·cm–1. Das Molarverhältnis der Komplexe beträgt M5-Br-PADAP=12.
  相似文献   

7.
A spectrophotometric study of the Cd(II) and Cu(II) complex of a new reagent, 2-(5-bromo-2-pyridylazo)-5-diethylamino phenol (5-Br-PADAP) in the presence of polyglycol octylphenyl ether (OP) is presented. A reddish binary complex is formed at pH 9 and shows maximal absorbance at 560 nm with molar absorptivity of 1.16 × 105 · mol−1 · cm−1 liter (Cd), 1.5 × 105 mol−1 · cm−1 · liter (Cu). Beer's law is followed over the range 0.0 to 20 μg cadmium(II) and 0.0–18 μg copper(II). The continuous variation method and molar ratio method showed that the metal ligand ratio is 1:2; ordinarily, most ions do not interfere with the determination and the method can be applied for direct spectrophotometric determination of cadmium(II) and copper(II) in actual samples and the results obtained are satisfactory.  相似文献   

8.
A selective and sensitive derivative photometric method has been developed for the determination of trace amounts of Zn2+ with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol in the presence of cetylpyridinium chloride, a cationic surfactant. The molar-absorption coefficient and analytical sensitivity of the 1:2 complex at 554 nm are 1.19 x 10(5) L mol(-1) cm(-1) and 0.56 ng mL(-1), respectively. The detection limit is 1.96 x 10(-2) ng mL(-1) and Beer's law is valid in the 0.02-0.66 microg mL(-1) range of Zn2+. The developed derivative procedure, using the zero-crossing measurement approach, is applied for the rapid and selective simultaneous determination of Zn2+ and Cd2+ in the range of 0.06-0.66 and 0.20-1.60 microg mL(-1), respectively. Complex matrices, including reference materials, environmental and biological samples and synthetic mixtures, have been successfully analyzed for trace amounts of the two metal ions.  相似文献   

9.
Reaction between gadolinium(III) and 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5- Br-PADAP) was studied for delineating optimal conditions for complexation. This reagent can be used for the spectrophotometric determination of Gd(III) in concentrations ranging from 0.04 to 1.2 ppm (a = 1.76(+/- 0.03) x 10(5) (1.(-1) mole(-1). cm). The reaction takes place at a pH between 9.2 and 11.6. In the presence of Triton X-100 this complex is soluble in water. In order to overcome difficulties caused by the presence of other lanthanides, an ion exchange chromatographic technique was used.  相似文献   

10.
A spectrophotometric study of the Th(IV) complex of a new reagent 2-(5-Bromo-2- pyridylazo)-5-diethylaminophenol (5-Br-PADAP) is presented. A reddish brown complex is formed at pH 4.86, and shows maximal absorbance at 580 nm with molar absorptivity of 1.66 × 105 mol−1 cm−1 liter. Beer's law is obeyed over the range 0.0 to 15 μg of thorium. Rare earths ions like La3+, Ce3+, and Y3+ do not interfere because they form complexes with 5-Br-PADAP at higher pH's (>9.94) (1). A new method for determining trace amounts of thorium is proposed, which possesses the advantages of high sensitivity and selectivity.  相似文献   

11.
A straightforward spectrophotometric method is described for the determination of uranium(VI) in trialkylamine sulphate extracts in kerosene diluent; 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Br-PADAP) is used for colour formation without resort to backextraction into an aqueous phase. The method provides good tolerance to sulphate ion and rapid colour development and appears to be free from interference when applied to extracts from uranium sulphate leach liquors.  相似文献   

12.
13.
A simple and very sensitive method has been developed for the determination of ascorbic acid based on the oxidation of ascorbic acid to dehydroascorbic acid by iron(III), followed by a complexation of iron(II) with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol(Br-PADAP). The iron(II) complex is formed immediately, with absorption maxima at 560 and 748 nm and a molar absorptivity of 1.31 × 105 l mole–1cm–1 and 5.69 × 104 l mole–1cm–1, respectively. The ascorbic acid determination is possible with a linear range up to 2.4 μg ml–1, a calibration sensitivity of 0.744 ml μg–1 at 560 nm and 0.323 ml μg–1 at 748 nm, and a detection limit of 15 ng ml–1 and 44 ng ml–1, respectively. The procedure was used for the ascorbic acid determination in several fruit juices and pharmaceutical formulations. The results demonstrated a good precision (R.S.D. < 1%) and are in agreement with those obtained with others methods. The Br-PADAP method proposed is six times more sensitive than the method using the iron(II)-1,10-phenanthroline system. Received: 7 May 1996 / Revised: 1 July 1996 / Accepted: 8 August 1996  相似文献   

14.
A simple and very sensitive method has been developed for the determination of ascorbic acid based on the oxidation of ascorbic acid to dehydroascorbic acid by iron(III), followed by a complexation of iron(II) with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol(Br-PADAP). The iron(II) complex is formed immediately, with absorption maxima at 560 and 748 nm and a molar absorptivity of 1.31 × 105 l mole–1cm–1 and 5.69 × 104 l mole–1cm–1, respectively. The ascorbic acid determination is possible with a linear range up to 2.4 μg ml–1, a calibration sensitivity of 0.744 ml μg–1 at 560 nm and 0.323 ml μg–1 at 748 nm, and a detection limit of 15 ng ml–1 and 44 ng ml–1, respectively. The procedure was used for the ascorbic acid determination in several fruit juices and pharmaceutical formulations. The results demonstrated a good precision (R.S.D. < 1%) and are in agreement with those obtained with others methods. The Br-PADAP method proposed is six times more sensitive than the method using the iron(II)-1,10-phenanthroline system. Received: 7 May 1996 / Revised: 1 July 1996 / Accepted: 8 August 1996  相似文献   

15.
Chromium can be quantitatively retained as 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP)-tetraphenylborate(TPB) complex onto microcrystalline naphthalene in the pH range 4.8–5.9 from a large volume of aqueous solutions of various standard samples. After filtration, the solid mass consisting of the chromium complex and naphthalene was dissolved with 5 mL of dimethylformamide and the metal was determined by air-acetylene FAAS. A detection limit of ¶4 ng/mL for chromium was established. The interference of a large number of anions and cations has been studied and the optimized conditions developed were utilized for the trace determination of chromium in various standard alloys and biological samples.  相似文献   

16.
Sözgen K  Tütem E 《Talanta》2004,62(5):971-976
A simple, sensitive and rapid derivative spectrophotometric method using 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) has been developed for simultaneous determination of Co(II), Ni(II) and Fe(II) which have very similar chemical behavior and appear together in many real samples. The complexes of all these metal ions with 5-Br-PADAP were formed immediately at pH 7.0 ammonium acetate buffered solution and were stable for at least 24 h. Second derivative spectra were selected for evaluation, because working wavelength determination was more precise and spectral overlap was less than in the ordinary and first derivative spectra. Three wavelengths at which the complexes exhibit extremum 2D values for Co(II), Ni(II) and Fe(II) were selected as analytical wavelengths, i.e., 640, 600 and 740 nm, respectively. Calibration curves drawn with zero-to-peak values at mentioned wavelengths were linear between 80 and 2000 ng ml−1 for each metal ion. Concentrations of Co(II) and Ni(II) were calculated from the total 2D values and the sum of the linear equations for these three cations at 640 and 600 nm, after Fe(II) assay by making use of the 2D value at 740 nm. Limits of detection (LOD) for Co(II), Ni(II) and Fe(II) were 2.7, 13.9 and 3.0 ng ml−1, respectively. The method has been applied to tool steel and heater resistance wire samples successfully.  相似文献   

17.
Summary The reaction of Fe(II) with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (Br-PADAP) is studied in detail and procedures for the sensitive determination of Fe(II) at pH 4.7 (acetate buffer), pH 9.0 (borate buffer) and in the presence of EDTA are optimized. A simultaneous determination of Fe, Cu, Zn, Co and Ni in aqueous medium and of Fe, Cu and Zn in blood serum with Br-PADAP at pH 9.0 using multivariate calibration with PLS evaluation of absorbance data also give satisfactory results.  相似文献   

18.
Chromium can be quantitatively retained as 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP)-tetra-phenylborate(TPB) complex onto microcrystalline naphthalene in the pH range 4.8-5.9 from a large volume of aqueous solutions of various standard samples. After filtration, the solid mass consisting of the chromium complex and naphthalene was dissolved with 5 mL of dimethylformamide and the metal was determined by air-acetylene FAAS. A detection limit of 4 ng/mL for chromium was established. The interference of a large number of anions and cations has been studied and the optimized conditions developed were utilized for the trace determination of chromium in various standard alloys and biological samples.  相似文献   

19.
20.
A new sensitive and highly selective method is described for the spectrophotometric determination of microgram amounts of vanadium(V). First, vanadium is isolated by extraction withN-benzoyl-N-phenylhydroxylamine (BPHA) in chloroform from about 4M hydrochloric acid medium. Then, chloroform is evaporated and the residue mineralized with mixture of cone. perchloric and nitric acid. Finally, a colour reaction of vanadium(V) separated with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol (5-Br-PADAP) in an acetate buffer (pH 4.5) gives a molar absorptivity of 5.48×104l·mol–1·cm–1 at 585 nm. The proposed method was applied for the determination of traces of vanadium in aluminium samples. The results obtained show a good precision and accuracy of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号