首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two new copper(II) compounds of chloranilate and 2,2':6',2' '-terpyridine have been synthesized, and the structures have been solved by the single-crystal X-ray diffraction method. The crystal structure of [[Cu(2)(CA)(terpy)(2)][Cu(CA)(2)]](n)(1), where H(2)CA = chloranilic acid and terpy = 2,2':6',2' '-terpyridine, consists of two modules, the dimer unit [Cu(2)(CA)(terpy)(2)](2+) and the anionic mononuclear unit [Cu(CA)(2)](2)(-), forming an alternated chain. The chain is stabilized by semicoordinating and additional but efficient secondary bonding interactions. The crystal structure of [[Cu(2)(CA)(terpy)(2)(dmso)(2)][Cu(CA)(2)(dmso)(2)](EtOH)](n)(2), where dmso = dimethyl sulfoxide, consists of solvent molecules and two discrete modules, the dimer unit [Cu(2)(CA)(terpy)(2)(dmso)(2)](2+) and the anionic mononuclear unit [Cu(CA)(2)(dmso)(2)](2)(-). The dimer units form a layer by secondary bonding interactions, and the monomer units and ethanol molecules are introduced between the layers. The magnetic properties of 1 and 2 have been investigated in the temperature range 2.0-300 K. A weak ferromagnetic interaction was observed in 1, J(a) = 2.36 cm(-)(1) and zJ(b) = -0.68 cm(-)(1) while no exchange coupling was observed in 2.  相似文献   

2.
The 5'-terminal TMG-capped triribonucleotide, m(3)(2,2,7)G(5)(')pppAmpUmpA, has been synthesized by condensation of an appropriately protected triribonucleotide derivative of ppAmpUmpA with a new TMG-capping reagent. During this total synthesis, it was found that the regioselective 2'-O-methylation of 3',5'-O-(1,1,3,3-tetraisopropyldisiloxane-1,3-diyl)-N-(4-monomethoxytrityl)adenosine was achieved by use of MeI/Ag(2)O without affecting the base moiety. A new route to 2-N,2-N-dimethylguanosine from guanosine via a three-step reaction has also been developed by reductive methylation using paraformaldehyde and sodium cyanoborohydride. These key intermediates were used as starting materials for the construction of a fully protected derivative of pAmpUmpA and a TMG-capping reagent of Im-pm(3)(2,2,7)G. The target TMG-capped tetramer, m(3)(2,2,7)G(5)(')pppAmpUmpA, was synthesized by condensation of a partially protected triribonucleotide 5'-terminal diphosphate species, ppA(MMTr)mpUmpA, with Im-pm(3)(2,2,7)G followed by treatment with 80% acetic acid. The structure of m(3)(2,2,7)G(5)(')pppAmpUmpA was characterized by (1)H and (31)P NMR spectroscopy as well as enzymatic assay using snake venom phosphodiesterase, calf intestinal phosphatase, and nuclease P1.  相似文献   

3.
In the search for complexes modeling the [Fe(CN)(2)(CO)(cysteinate)(2)] cores of the active centers of [NiFe] hydrogenases, the complex (NEt(4))(2)[Fe(CN)(2)(CO)('S(3)')] (4) was found ('S(3)'(2-)=bis(2-mercaptophenyl)sulfide(2-)). Starting complex for the synthesis of 4 was [Fe(CO)(2)('S(3)')](2) (1). Complex 1 formed from [Fe(CO)(3)(PhCH=CHCOMe)] and neutral 'S(3)'-H(2). Reactions of 1 with PCy(3) or DPPE (1,2-bis(diphenylphosphino)ethane) yielded diastereoselectively [Fe(CO)(2)(PCy(3))('S(3)')] (2) and [Fe(CO)(dppe)('S(3)')] (3). The diastereoselective formation of 2 and 3 is rationalized by the trans influence of the 'S(3)'(2-) thiolate and thioether S atoms which act as pi donors and pi acceptors, respectively. The trans influence of the 'S(3)'(2-) sulfur donors also rationalizes the diastereoselective formation of the C(1) symmetrical anion of 4, when 1 is treated with four equivalents of NEt(4)CN. The molecular structures of 1, 3 x 0.5 C(7)H(8), and (AsPh(4))(2)[Fe(CN)(2)(CO)('S(3)')] x acetone (4 a x C(3)H(6)O) were determined by X-ray structure analyses. Complex 4 is the first complex that models the unusual 2:1 cyano/carbonyl and dithiolate coordination of the [NiFe] hydrogenase iron site. Complex 4 can be reversibly oxidized electrochemically; chemical oxidation of 4 by [Fe(Cp)(2)PF(6)], however, led to loss of the CO ligand and yielded only products, which could not be characterized. When dissolved in solvents of increasing proton activity (from CH(3)CN to buffered H(2)O), complex 4 exhibits drastic nu(CO) blue shifts of up to 44 cm(-1), and relatively small nu(CN) red shifts of approximately 10 cm(-1). The nu(CO) frequency of 4 in H(2)O (1973 cm(-1)) is higher than that of any hydrogenase state (1952 cm(-1)). In addition, the nu(CO) frequency shift of 4 in various solvents is larger than that of [NiFe] hydrogenase in its most reduced or oxidized state. These results demonstrate that complexes modeling properly the nu(CO) frequencies of [NiFe] hydrogenase probably need a [Ni(thiolate)(2)] unit. The results also demonstrate that the nu(CO) frequency of [Fe(CN)(2)(CO)(thiolate)(2)] complexes is more significantly shifted by changing the solvent than the nu(CO) frequency of [NiFe] hydrogenases by coupled-proton and electron-transfer reactions. The "iron-wheel" complex [Fe(6)[Fe('S(3)')(2)](6)] (6) resulting as a minor by-product from the recrystallization of 2 in boiling toluene could be characterized by X-ray structure analysis.  相似文献   

4.
[Ru(II)(terpy)(DMSO)Cl(2)] complexes were synthesized as a 5/1 mixture of cis and trans isomers, and their reactivities with CO and with substituted 2,2':6',2' '-terpyridine (terpy) moieties have been investigated. The structure of a trans isomer and its CO adduct have been unambiguously assigned by spectroscopy and X-ray diffraction. The [Ru(terpy)(terpy-Br)](2+) complex prepared either from the cis-[Ru(II)(terpy)(DMSO)Cl(2)] or from the cis-[Ru(II)(terpy-Br)(DMSO)Cl(2)] precursor appeared to be reactive in cross-coupling reactions promoted by low-valent palladium(0) and is an attractive target for the stepwise synthesis of polynuclear complexes bearing vacant coordination sites (terpy-Br for 4'-bromo-2,2':6',2' '-terpyridine). Several bipyridine, phenanthroline, and bipyrimidine complexes were prepared this way and their optical and redox properties determined and discussed.  相似文献   

5.
Reactions of perchlorates of iron(II), nickel(II), and zinc(II) with 2,2':6',2':6',2'"-quaterpyridine (qtpy) gave the first crystallographically established bis-qtpy metal complexes of formula [M(qtpy)(2)][ClO(4)](2) (M = Fe, Ni, Zn). Coordination of two terdentate quaterpyridines to the same center produces a distorted octahedron of six nitrogen atoms around the metal, leaving two pendant pyridyl groups, one for each quaterpyridine. For the diamagnetic zinc system, an NMR investigation has been carried out in order to establish the conditions to obtain the intermediate mono-qtpy complex, of formula [Zn(qtpy)(H(2)O)(2)][ClO(4)](2), which has also been crystallographically established. The corresponding hexafluorophosphate derivatives [M(qtpy)(2)][PF(6)](2) (M = Ni and Zn) were prepared in DMF at room temperature.  相似文献   

6.
Thermolysis of [Ru(PPh(3))(dppe)(CO)HCl] (dppe = 1,2-bis(diphenylphosphino)ethane) with the N-heterocyclic carbenes I(i)Pr(2)Me(2) (1,3-diisopropyl-4,5-dimethyl-imidazol-2-ylidene), IEt(2)Me(2) (1,3-diethyl-4,5-dimethyl-imidazol-2-ylidene) or ICy (1,3-dicyclohexylimidazol-2-ylidene) gave the cyclometallated carbene complexes [Ru(NHC)'(dppe)(CO)H] (NHC = I(i)Pr(2)Me(2), 4; IEt(2)Me(2), 5; ICy, 6). Dissolution of 4 in CH(2)Cl(2) or CHCl(3) gave the trans-Cl-Ru-P complex [Ru(I(i)Pr(2)Me(2))'(dppe)(CO)Cl] (7), which converted over hours at room temperature to the trans-Cl-Ru-CO isomer 7'. Chloride abstraction from 7 by NaBPh(4) under an atmosphere of H(2) produced the cationic mono-hydride complex [Ru(I(i)Pr(2)Me(2))(dppe)(CO)H][BPh(4)] (9), which could also be formed by protonating 4 with 1 eq HBF(4)·OEt(2). Treatment of 4 with excess HBF(4)·OEt(2) followed by extraction into MeCN produced the dicationic acetonitrile complex [Ru(I(i)Pr(2)Me(2))(dppe)(CO)(NCMe)(2)][BF(4)](2) (10). The structures of 6, 7, 7' and 10 have been determined by X-ray crystallography.  相似文献   

7.
The diastereospecific chemical syntheses of uridine-2',3',4',5',5' '-(2)H(5) (21a), adenosine-2',3',4',5',5' '-(2)H(5) (21b), cytidine-2',3',4',5',5' '-(2)H(5)(2)H(5) (21c), and guanosine-2',3',4',5',5' '-(2)H(5) (21d) (>97 atom % (2)H at C2', C3', C4', and C5'/C5' ') have been achieved for their use in the solution NMR structure determination of oligo-RNA by the Uppsala "NMR-window" concept (refs 4a-c, 5a, 6), in which a small (1)H segment is NMR-visible, while the rest is made NMR-invisible by incorporation of the deuterated blocks 21a-d. The deuterated ribonucleosides 21a-d have been prepared by the condensation of appropriately protected aglycone with 1-O-acetyl-2,3,5-tri-O-(4-toluoyl)-alpha/beta-D-ribofuranose-2,3,4,5,5'-(2)H(5) (19), which has been obtained via diastereospecific deuterium incorporation at the C2 center of appropriate D-ribose-(2)H(4) derivatives either through an oxidation-reduction-inversion sequence or a one-step deuterium-proton exchange in high overall yield (44% and 24%, respectively).  相似文献   

8.
N-(2-Pyridylmethyl)pyridine-2-methylketimine (L1) was synthesized from equimolar quantities of (2-pyridyl)methylamine and 2-acetylpyridine. Methanolic solution of L1 reacted readily with Cu(NO3)2.3H2O in air, affording green solid of composition {[Cu(L2)(OH)(NO3)][Cu(L2)(NO3)2]}.2H2O, where L2 is 4'-(2-pyridyl)-2,2':6',2' '-terpyridine. Oxidation of the active methylene group of L1 to an imide and then condensation with 2-acetylpyridine involving a C-C bond-forming reaction, mediated by a Cu2+ ion, are the essential steps involved in the conversion of L1 to L2. L2 is isolated by extrusion of Cu2+ with EDTA(2-). The copper center in [Cu(L2)(OH)(NO3)] has a mer-N3O3 environment, and that in [Cu(L2)(NO3)2] has a distorted trigonal-bipyramidal geometry. Two H2O molecules held by C-H...O interactions are present in the predominantly hydrophobic channels of approximate cavity dimension 7.60 x 6.50 A created by aromatic rings through pi-pi interactions.  相似文献   

9.
The complex [(terpy)(H(2)O)Mn(III)(O)(2)Mn(IV)(OH(2))(terpy)](NO(3))(3) (terpy = 2,2':6,2' '-terpyridine) (1)catalyzes O(2) evolution from either KHSO(5) (potassium oxone) or NaOCl. The reactions follow Michaelis-Menten kinetics where V(max) = 2420 +/- 490 mol O(2) (mol 1)(-1) hr(-1) and K(M) = 53 +/- 5 mM for oxone ([1] = 7.5 microM), and V(max) = 6.5 +/- 0.3 mol O(2) (mol 1)(-1) hr(-1) and K(M) = 39 +/- 4 mM for hypochlorite ([1] = 70 microM), with first-order kinetics observed in 1 for both oxidants. A mechanism is proposed having a preequilibrium between 1 and HSO(5-) or OCl(-), supported by the isolation and structural characterization of [(terpy)(SO(4))Mn(IV)(O)(2)Mn(IV)(O(4)S)(terpy)] (2). Isotope-labeling studies using H(2)(18)O and KHS(16)O(5) show that O(2) evolution proceeds via an intermediate that can exchange with water, where Raman spectroscopy has been used to confirm that the active oxygen of HSO(5-) is nonexchanging (t(1/2) > 1 h). The amount of label incorporated into O(2) is dependent on the relative concentrations of oxone and 1. (32)O(2):(34)O(2):(36)O(2) is 91.9 +/- 0.3:7.6 +/- 0.3:0.51 +/- 0.48, when [HSO(5-)] = 50 mM (0.5 mM 1), and 49 +/- 21:39 +/- 15:12 +/- 6 when [HSO(5-)] = 15 mM (0.75 mM 1). The rate-limiting step of O(2) evolution is proposed to be formation of a formally Mn(V)=O moiety which could then competitively react with either oxone or water/hydroxide to produce O(2). These results show that 1 serves as a functional model for photosynthetic water oxidation.  相似文献   

10.
Hydrolytic reactions of guanosyl-(3',3')-uridine and guanosyl-(3',3')-(2',5'-di-O-methyluridine) have been followed by RP HPLC over a wide pH range at 363.2 K in order to elucidate the role of the 2'-hydroxyl group as a hydrogen-bond donor upon departure of the 3'-uridine moiety. Under neutral and basic conditions, guanosyl-(3',3')-uridine undergoes hydroxide ion-catalyzed cleavage (first order in [OH(-)]) of the P-O3' bonds, giving uridine and guanosine 2',3'-cyclic monophosphates, which are subsequently hydrolyzed to a mixture of 2'- and 3'-monophosphates. This bond rupture is 23 times as fast as the corresponding cleavage of the P-O3' bond of guanosyl-(3',3')-(2',5'-di-O-methyluridine) to yield 2',5'-O-dimethyluridine and guanosine 2',3'-cyclic phosphate. Under acidic conditions, where the reactivity differences are smaller, depurination and isomerization compete with the cleavage. The effect of Zn(2+) on the cleavage of the P-O3' bonds of guanosyl-(3',3')-uridine is modest: about 6-fold acceleration was observed at [Zn(2+)] = 5 mmol L(-)(1) and pH 5.6. With guanosyl-(3',3')-(2',5'-di-O-methyluridine) the rate-acceleration effect is greater: a 37-fold acceleration was observed. The mechanisms of the partial reactions, in particular the effects of the 2'-hydroxyl group on the departure of the 3'-linked nucleoside, are discussed.  相似文献   

11.
A series of ruthenium complexes [Ru(OAc)(dioxolene)(terpy)] having various substituents on the dioxolene ligand (dioxolene = 3,5-t-Bu2C6H2O2 (1), 4-t-BuC6H3O2 (2), 4-ClC6H3O2 (3), 3,5-Cl2C6H2O2 (4), Cl4C6O2 (5); terpy = 2,2':6'2' '-terpyridine) were prepared. EPR spectra of these complexes in glassy frozen solutions (CH2Cl2:MeOH = 95:5, v/v) at 20 K showed anisotropic signals with g tensor components 2.242 > g1 > 2.104, 2.097 > g2 > 2.042, and 1.951 > g3 > 1.846. An anisotropic value, Deltag = g1 - g3, and an isotropic g value, g = [(g1(2) + g2(2) + g3(2))/3]1/2, increase in the order 1 < 2 < 3 < 4 < 5. The resonance between the Ru(II)(sq) (sq = semiquinone) and Ru(III)(cat) (cat = catecholato) frameworks shifts to the latter with an increase of the number of electron-withdrawing substituents on the dioxolene ligand. DFT calculations of 1, 2, 3, and 5 also support the increase of the Ru spin density (Ru(III) character) with an increase of the number of Cl atoms on the dioxolene ligand. The singly occupied molecular orbitals (SOMOs) of 1 and 5 are very similar to each other and stretch out the Ru-dioxolene frameworks, whereas the lowest unoccupied molecular orbital (LUMO) of 5 is localized on Ru and two oxygen atoms of dioxolene in comparison with that of 1. Electron-withdrawing groups decrease the energy levels of both the SOMO and LUMO. In other words, an increase in the number of Cl atoms in the dioxolene ligand results in an increase of the positive charge on Ru. Successive shifts in the electronic structure between the Ru(II)(sq) and Ru(III)(cat) frameworks caused by the variation of the substituents are compatible with the experimental data.  相似文献   

12.
DNA damage by MoCH3(eta3-allyl)(CO)2(phen) complexes has been shown to occur by two mechanisms: by backbone cleavage via the abstraction of H1' and/or H5' from the deoxyribose moiety and by base modification, resulting in G-specific cleavage via the formation of base-labile residues methylguanine, methoxyguanine, and 8-oxo-G.  相似文献   

13.
Multiple low-lying electronic states of M(3)O(9)(-) and M(3)O(9)(2-) (M = Mo, W) arise from the occupation of the near-degenerate low-lying virtual orbitals in the neutral clusters. We used density functional theory (DFT) and coupled cluster theory (CCSD(T)) with correlation consistent basis sets to study the structures and energetics of the electronic states of these anions. The adiabatic and vertical electron detachment energies (ADEs and VDEs) of the anionic clusters were calculated with 27 exchange-correlation functionals including one local spin density approximation functional, 13 generalized gradient approximation (GGA) functionals, and 13 hybrid GGA functionals, as well as the CCSD(T) method. For M(3)O(9)(-), CCSD(T) and nearly all of the DFT exchange-correlation functionals studied predict the (2)A(1) state arising from the Jahn-Teller distortion due to singly occupying the degenerate e' orbital to be lower in energy than the (2)A(1)' state arising from singly occupying the nondegenerate a(1)' orbital. For W(3)O(9)(-), the (2)A(1) state was predicted to have essentially the same energy as the (2)A(1)' state at the CCSD(T) level with core-valence correlation corrections included and to be higher in energy or essentially isoenergetic with most DFT methods. The calculated VDEs from the CCSD(T) method are in reasonable agreement with the experimental values for both electronic states if estimates for the corrections due to basis set incompleteness are included. For M(3)O(9)(2-), the singlet state arising from doubly occupying the nondegenerate a(1)' orbital was predicted to be the most stable state for both M = Mo and W. However, whereas M(3)O(9)(2-) was predicted to be less stable than M(3)O(9)(-), W(3)O(9)(2-) was predicted to be more stable than W(3)O(9)(-).  相似文献   

14.
The heteroleptic and homoleptic ruthenium(II) complexes of 4'-cyano-2,2':6',2' '-terpyridine are synthesized by palladium catalyzed cyanation of the corresponding Ru(II) complexes of 4'-chloro-2,2':6',2' '-terpyridine. The introduction of the strongly electron-withdrawing cyano group into the Ru(tpy)(2)(2+) moiety dramatically changes its photophysical and redox properties as well as prolongs its room temperature excited-state lifetime.  相似文献   

15.
The trifluorido complex mer-[CrF(3)(py)(3)] (py = pyridine) reacts with 1 equiv. of [Ln(hfac)(3)(H(2)O)(2)] and depending on the solvent forms the tetranuclear clusters [Cr(2)Ln(2)(μ-F)(4)(μ-OH)(2)(py)(4)(hfac)(6)], 1Ln, and [Cr(2)Ln(2)(μ-F)(4)F(2)(py)(6)(hfac)(6)], 2Ln, in acetonitrile and 1,2-dichloroethane, respectively (Ln = Y, Gd, Tb, Dy, Ho, and Er; hfacH = 1,1,1,5,5,5-hexafluoroacetylacetone). Reaction with [Dy(hfac)(3)(H(2)O)(2)] in dichloromethane produces the dinuclear cluster [CrDy(μ-F)F(OH(2))(py)(3)(hfac)(4)], 3Dy. All the clusters feature fluoride bridges between the chromium(iii) and lanthanide(iii) centres. Fits of susceptibility data for 1Gd and 2Gd reveal the fluoride-mediated chromium(iii)-lanthanide(iii) exchange interactions to be 0.43(5) cm(-1) and 0.57(7) cm(-1), respectively (in the convention). Heat capacity measurements on 2Gd reveal a moderate magneto-caloric effect (MCE) reaching -ΔS(m)(T) = 11.4 J kg(-1) K(-1) for ΔB(0) = 9 T → 0 T at T = 4.1 K. Out-of-phase alternating-current susceptibility (χ') signals are observed for 1Dy, 2Dy and 2Tb, demonstrating slow relaxation of the magnetization.  相似文献   

16.
Black dye (BD), isomer 1 ([Ru(II)(H3-tctpy)(NCS)3](-1), where H3-tctpy = 4,4',4' '-tricarboxy-2,2':6,2' '-terpyridine) is known to be an excellent sensitizer for dye-sensitized solar cells and exhibits a very good near-IR photo response, compared to other ruthenium dyes. Because isothiocyanate is a linear ambidentate ligand, BD has three other linkage isomers, [Ru(H3-tctpy)(NCS)2(SCN)](-1), isomer 2 and 2', and [Ru(H3-tctpy))(SCN)3](-1), isomer 3. In this study, we have calculated the geometry of BD and its isomers by DFT. Further, we have analyzed the bonding in these isomers using NBO methods. TDDFT calculations combined with scalar relativistic zero-order regular approximations (SR-ZORA) have been carried out to simulate the absorption spectra. Calculations have been performed for the isomers both in vacuo and in solvent (ethanol). The inclusion of the solvent is found to be important to obtain spectra in good agreement with the experiment. The first absorption bands are dominated by the metal-to-ligand charge transfer (MLCT) and ligand-to-ligand charge transfer (LLCT).  相似文献   

17.
The cooperative action of multiple Cu(II) nuclear centers is shown to be effective and selective in the hydrolysis of 2'-5' and 3'-5' ribonucleotides. Reported herein is the specific catalysis by two trinuclear Cu(II) complexes of L3A and L3B. Pseudo first-order kinetic studies reveal that the L3A trinuclear Cu(II) complex effects hydrolysis of Up(2'-5')U with a rate constant of 28 x 10(-)(4) min(-)(1) and Up(3'-5')U with a rate constant of 0.5 x 10(-)(4) min(-)(1). The hydrolyses of Ap(3'-5')A and Ap(2'-5')A proceed with rate constants of 24 x 10(-)(4) min(-)(1) and 0.5 x 10(-)(4) min(-)(1) respectively. The L3A trinuclear Cu(II) complex demonstrates high specificity for Up(2'-5')U and Ap(3'-5')A. Similar studies with the more rigid L3B trinuclear Cu(II) complex shows no selectivity and yields lower rate constants for hydrolysis. The selectivity observed with the L3A ligand is attributed to the geometry of the ligand-bound diribonucleotide which ultimately dictates the proximity of the attacking hydroxyl and the phosphoester to a Cu(II) center for activation and subsequent hydrolysis.  相似文献   

18.
Nitrosyl complexes with {Ru-NO} (6) and {Ru-NO} (7) configurations have been isolated in the framework of [Ru(trpy)(L)(NO)] ( n+ ) [trpy = 2,2':6',2'-terpyridine, L = 2-phenylimidazo[4,5- f]1,10-phenanthroline] as the perchlorate salts [ 4](ClO 4) 3 and [ 4](ClO 4) 2, respectively. Single crystals of protonated material [ 4-H (+)](ClO 4) 4.2H 2O reveal a Ru-N-O bond angle of 176.1(7) degrees and triply bonded N-O with a 1.127(9) A bond length. Structures were also determined for precursor compounds of [ 4] (3+) in the form of [Ru(trpy)(L)(Cl)](ClO 4).4.5H 2O and [Ru(trpy)(L-H)(CH 3CN)](ClO 4) 3.H 2O. In agreement with largely NO centered reduction, a sizable shift in nu(NO) frequency was observed on moving from [ 4] (3+) (1953 cm (-1)) to [ 4] (2+) (1654 cm (-1)). The Ru (II)-NO* in isolated or electrogenerated [ 4] (2+) exhibits an EPR spectrum with g 1 = 2.020, g 2 = 1.995, and g 3 = 1.884 in CH 3CN at 110 K, reflecting partial metal contribution to the singly occupied molecular orbital (SOMO); (14)N (NO) hyperfine splitting ( A 2 = 30 G) was also observed. The plot of nu(NO) versus E degrees ({RuNO} (6) --> {RuNO} (7)) for 12 analogous complexes [Ru(trpy)(L')(NO)] ( n+ ) exhibits a linear trend. The electrophilic Ru-NO (+) species [ 4] (3+) is transformed to the corresponding Ru-NO 2 (-) system in the presence of OH (-) with k = 2.02 x 10 (-4) s (-1) at 303 K. In the presence of a steady flow of dioxygen gas, the Ru (II)-NO* state in [ 4] (2+) oxidizes to [ 4] (3+) through an associatively activated pathway (Delta S++ = -190.4 J K (-1) M (-1)) with a rate constant ( k [s (-1)]) of 5.33 x 10 (-3). On irradiation with light (Xe lamp), the acetonitrile solution of paramagnetic [Ru(trpy)(L)(NO)] (2+) ([ 4] (2+)) undergoes facile photorelease of NO ( k NO = 2.0 x 10 (-1) min (-1) and t 1/2 approximately 3.5 min) with the concomitant formation of the solvate [Ru (II)(trpy)(L)(CH 3CN)] (2+) [ 2'] (2+). The photoreleased NO can be trapped as an Mb-NO adduct.  相似文献   

19.
Reaction between the Os(VI)-hydrazido complex, trans-[Os(VI)(tpy)(Cl)(2)(NN(CH(2))(4)O)](2+) (tpy = 2,2':6',2"-terpyridine and O(CH(2))(4)N(-) = morpholide), and a series of N- or O-bases gives as products the substituted Os(VI)-hydrazido complexes, trans-[Os(VI)(4'-RNtpy)(Cl)(2)(NN(CH(2))(4)O)](2+) or trans-[Os(VI)(4'-ROtpy)(Cl)(2)(NN(CH(2))(4)O)](2+) (RN(-) = anilide (PhNH(-)); S,S-diphenyl sulfilimide (Ph(2)S=N(-)); benzophenone imide (Ph(2)C=N(-)); piperidide ((CH(2))(5)N(-)); morpholide (O(CH(2))(4)N(-)); ethylamide (EtNH(-)); diethylamide (Et(2)N(-)); and tert-butylamide (t-BuNH(-)) and RO(-) = tert-butoxide (t-BuO(-)) and acetate (MeCO(2)(-)). The rate law for the formation of the morpholide-substituted complex is first order in trans-[Os(VI)(tpy)(Cl)(2)(NN(CH(2))(4)O)](2+) and second order in morpholine with k(morp)(25 degrees C, CH(3)CN) = (2.15 +/- 0.04) x 10(6) M(-)(2) s(-)(1). Possible mechanisms are proposed for substitution at the 4'-position of the tpy ligand by the added nucleophiles. The key features of the suggested mechanisms are the extraordinary electron withdrawing effect of Os(VI) on tpy and the ability of the metal to undergo intramolecular Os(VI) to Os(IV) electron transfer. These substituted Os(VI)-hydrazido complexes can be electrochemically reduced to the corresponding Os(V), Os(IV), and Os(III) forms. The Os-N bond length of 1.778(4) A and Os-N-N angle of 172.5(4) degrees in trans-[Os(VI)(4'-O(CH(2))(4)Ntpy)(Cl)(2)(NN(CH(2))(4)O)](2+) are consistent with sp-hybridization of the alpha-nitrogen of the hydrazido ligand and an Os-N triple bond. The extensive ring substitution chemistry implied for the Os(VI)-hydrazido complexes is discussed.  相似文献   

20.
In this paper, we present a calculation for the bound states of A(1) symmetry on the spin-aligned Li(3)(1 (4)A(')) potential energy surface. We apply a mixture of discrete variable representation and distributed approximating functional methods to discretize the Hamiltonian. We also introduce a new method that significantly reduces the computational effort needed to determine the lowest eigenvalues and eigenvectors (bound state energies and wave functions of the full Hamiltonian). In our study, we have found the lowest 150 energy bound states converged to less than 0.005% error, and most of the excited energy bound states converged to less than 2.0% error. Furthermore, we have estimated the total number of the A(1) bound states of Li(3) on the spin-aligned Li(3)(1 (4)A(')) potential surface to be 601.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号