首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report the synthesis and encapsulation properties of long (up to 5 nm) molecular nanotubes 1-4, which are based on calix[4]arenes and can be filled with multiple nitrosonium (NO(+)) ions upon reaction with NO(2)/N(2)O(4) gases. These are among the largest nanoscale molecular containers prepared to date and can entrap up to five guests. The structure and properties of tubular complexes 1(NO(+))(2)-4(NO(+))(5) were studied by UV/Vis, FTIR, and (1)H NMR spectroscopy in solution, and also by molecular modeling. Entrapment of NO(+) in 1(NO(+))(2)-4(NO(+))(5) is reversible, and addition of [18]crown-6 quickly recovers starting tubes 1-4. The FTIR and titration data revealed enhanced binding of NO(+) in longer tubes, which may be due to cooperativity. The described nanotubes may serve as materials for storing and converting NO(x) and also offer a promise to further develop supramolecular chemistry of molecular containers. These findings also open wider perspectives towards applications of synthetic nanotubes as alternatives to carbon nanotubes.  相似文献   

2.
An approach toward visual detection and chemical utilization of NO(2)/N(2)O(4) is proposed, which employs simple calix[4]arenes. Exposure of tetra-O-alkylated calix[4]arenes 1 and 2, possessing either a cone or a 1,3-alternate conformation, to NO(2)/N(2)O(4), both in chloroform solution and in the solid state, results in deeply colored calixarene-nitrosonium (NO(+)) complexes. In the presence of a Lewis acid, such as SnCl(4), stable calixarene-NO(+) complexes 7 and 8 were isolated in a quantitative yield and characterized by UV-vis, FTIR, high-resolution (1)H NMR spectroscopy and elemental analysis. NO(+) is found encapsulated within the calixarene cavity, and stable charge-transfer complexes result with K(ass) > 10(6) M(-1) (CDCl(3)). The NO(+) encapsulation was also demonstrated in titration experiments with calixarenes 1, 2, and 5 and commercially available NO(+)SbF(6)(-) salt in chloroform. The complexation process is reversible, and the complexes dissociate upon addition of water and alcohol, recovering the parent calixarenes. Attachment of functionalized calix[4]arenes to silica gel was demonstrated, which afforded a solid material 15 capable of visual detection and entrapment of NO(2)/N(2)O(4). Calixarene-NO(+) complexes can be utilized for the NO(+) transfer processes and nitrosation reactions. The NO(+) guest transfer between two calixarene containers 2 and 5 was achieved and studied by UV-vis and (1)H NMR spectroscopy. Chemical fixation of NO(2)/N(2)O(4) was demonstrated through their quantitative transformation into the calixarene-NO(+) complex and its use as a nitrosonium transfer agent in the synthesis of N-nitrosoamides. These results may lead toward novel nitrogen oxides storing materials.  相似文献   

3.
A selected ion flow tube (SIFT) experimental investigation has been carried out of the reactions of H3O+, NO+ and O2+ with NO, NO2, N2O and HNO2, in order to obtain the essential kinetic data for the analyses of these compounds in air using selected ion flow tube mass spectrometry (SIFT-MS). These investigations show that NO+ ions do not react at a significant rate with any of these NOx compounds and that H3O+ ions react only with HNO2 (product ions H2NO2+ (75%) and NO+ (25%)). O2+ ions react with NO (product ion NO+), NO2 (product ion NO2+) and HNO2 (product ions NO+ (75%), NO2+ (25%)), but not with N2O. We conclude that both NO and NO2 can be accurately quantified in air using only O2+ precursor ions and SIFT-MS when HNO2 is not present. However, when HNO2 is present it invariably co-exists with both NO and NO2 and then both H3O+ and O2+ precursor ions are needed to determine the partial pressures of NO, NO2 and HNO2 in the air mixture. We also conclude that currently N2O cannot be analysed in air using SIFT-MS.  相似文献   

4.
The use of simple calix[4]arenes for chemical conversion of NO2/N2O4 gases is demonstrated in solution and in the solid state. Upon reacting with these gases, calixarenes 1 encapsulate nitrosonium (NO+) cations within their cavities with the formation of stable calixarene-NO+ complexes 2. These complexes act as encapsulated nitrosating reagents; cavity effects control their reactivity and selectivity. Complexes 2 were effectively used for nitrosation of secondary amides 5, including chiral derivatives. Unique size-shape selectivity was observed, allowing for exclusive nitrosation of less crowded N-Me amides 5 a-e (up to 95 % yields). Bulkier N-Alk (Alk>Me) substrates 5 did not react due to the hindered approach to the encapsulated NO+ reagents. Robust, silica gel based calixarene material 3 was prepared, which reversibly traps NO2/N2O4 with the formation of NO+-storing silica gel 4. With material 4, similar size-shape selectivity was observed for nitrosation. The N-Me-N-nitroso derivatives 6 d,e were obtained with approximately 30 % yields, while bulkier amides were nitrosated with much lower yields (<8 %). Enantiomerically pure encapsulating reagent 2 d was tested for nitrosation of racemic amide 5 t, showing modest but reproducible stereoselectivity and approximately 15 % ee. Given high affinity to NO+ species, which can be generated by a number of NOX gases, these supramolecular reagents and materials may be useful for NOX entrapment and separation in the environment and biomedical areas.  相似文献   

5.
We investigated the reactive uptake of NO3, N2O5, NO2, HNO3, and O3 on three types of solid polycyclic aromatic hydrocarbons (PAHs) using a coated wall flow tube reactor coupled to a chemical ionization mass spectrometer. The PAH surfaces studied were the 4-ring systems pyrene, benz[a]anthracene, and fluoranthene. Reaction of NO3 radicals with all three PAHs was observed to be very fast with the reactive uptake coefficient, gamma, ranging from 0.059 (+0.11/-0.049) for benz[a]anthracene at 273 K to 0.79 (+0.21/-0.67) for pyrene at room temperature. In contrast to the NO3 reactions, reactions of the different PAHs with the other gas-phase species (N2O5, NO2, HNO3, and O3) were at or below the detection limit (gamma 相似文献   

6.
The absolute rate coefficients at 298 K for the reactions of O(2) (-) + N((4)S(3/2)) and O(2) (-) + O((3)P) have been determined in a selected-ion flow tube instrument. O atoms are generated by the quantitative titration of N atoms with NO, where the N atoms are produced by microwave discharge on N(2). The experimental procedure allows for the determination of rate constants for the reaction of the reactant ion with N((4)S(3/2)) and O((3)P). The rate coefficient for O(2) (-) + N is found to be 2.3x10(-10)+/-40% cm(3) molecule(-1) s(-1), a factor of 2 slower than previously determined. In addition, it was found that the reaction proceeds by two different reaction channels to give (1) NO(2)+e(-) and (2) O(-)+NO. The second channel was not reported in the previous study and accounts for ca. 35% of the reaction. An overall rate coefficient of 3.9 x 10(-10) cm(3) molecule(-1) s(-1) was determined for O(2) (-) + O, which is slightly faster than previously reported. Branching ratios for this reaction were determined to be <55%O(3) + e(-) and >45%O(-) + O(2).  相似文献   

7.
Zhang J  Goh JK  Tan WT  Bond AM 《Inorganic chemistry》2006,45(9):3732-3740
Voltammetric studies on the reduction of alpha and beta isomers of the Keggin polyoxometalate anion [SiW12O40]4- reveal a series of electrochemically reversible processes in acidic aqueous media. In the presence of NO2-, catalytic current is detected in the potential region of the [SiW12O40]4-/5- process. Electronic spectroscopy and simulation of voltammetric data undertaken at variable [NO2-] and [H+] allow the following mechanism to be postulated, [SiW12O40]4- + e- <-->[SiW12O40]5-, H+ + HNO2 <--> NO+ + H2O, NO+ + [SiW12O40]5- --> NO + [SiW12O40]4-. The second-order rate constant for the rate-determining step is faster for the alpha isomer than for the beta one. This may be attributed to the different reversible potentials of -0.144 V (alpha isomer) and -0.036 V vs Ag/AgCl (beta isomer) and, hence, smaller driving force for an assumed outer sphere electron-transfer reaction in the case of beta isomer. A stable, water-insoluble, thin-film [Ru(bipy)3]2[alpha-SiW12O40] chemically modified electrode was generated electrochemically via ion-exchange of [Ru(bipy)3]2+ with Bu4N+ in the [Bu4N]4[alpha-SiW12O40] solid. The first reduction process with this modified electrode gives rise to the reaction [Ru(bipy)3]2[alpha-SiW12O40](solid) + H+(soln) + e- <--> H[Ru(bipy)3]2[alpha-SiW12O40](solid). The need to transfer a proton from the solution to the solid phase for charge neutralization purposes introduces a hydrogen-ion concentration dependence into this reaction, which is not found in the solution-phase study. Nevertheless, the voltammetric catalytic activity with respect to nitrite reduction is retained with the chemically modified electrode. However, nitrite catalysis with the [Ru(bipy)3]2[alpha-SiW12O40]-modified electrode is now independent of concentration of H+, rather than exhibiting a first-order dependence, and full mechanistic details for this process are unknown.  相似文献   

8.
Ab initio computational methods were used to obtain Delta(r)H(o), Delta(r)G(o), and Delta(r)S(o) for the reactions 2 NO <=> N(2)O(2) (I), NO+NO(2) <=> N(2)O(3) (II), 2 NO(2) <=> N(2)O(4) (III), NO(2)+NO(3) <=> N(2)O(5) (IV), and 2 N(2)O <=> N(4)O(2) (V) at 298.15 K. Optimized geometries and frequencies were obtained at the CCSD(T) level for all molecules except for NO, NO(2), and NO(3), for which UCCSD(T) was used. In all cases the aug-cc-pVDZ (avdz) basis set was employed. The electronic energies of all species were obtained from complete basis set extrapolations (to aug-cc-pV5Z) using five different extrapolation methods. The [U]CCSD(T)/avdz geometries and frequencies of the N(x)O(y) compounds are compared with literature values, and problems associated with the values and assignments of low-frequency modes are discussed. The standard entropies are compared with values cited in the NIST/JANAF tables [NIST-JANAF Thermochemical Tables, J. Phys. Chem. Ref. Data Monograph No. 9, 4th ed. edited by M. W. Chase, Jr. (American Chemical Society and American Institute of Physics, Woodbury, NY, 1988)]. With the exception of I, in which the dimer is weakly bound, and V, for which thermodynamic data appears to be lacking, the calculated standard thermodynamic functions of reaction are in good agreement with literature values obtained both from statistical mechanical and various equilibrium methods. A multireference-configuration interaction calculation (MRCI+Q) for I provides a D(e) value that is consistent with previous calculations. The combined uncertainties of the NIST/JANAF values for Delta(r)H(o), Delta(r)G(o), and Delta(r)S(o) of II, III, and IV are discussed. The potential surface for the dissociation of N(2)O(4) was explored using multireference methods. No evidence of a barrier to dissociation was found.  相似文献   

9.
The new N5+ salt, N5+ SbF(6)(-), was prepared from N(2)F(+)SbF(6)(-) and HN(3) in anhydrous HF solution. The white solid is surprisingly stable, decomposing only at 70 degrees C, and is relatively insensitive to impact. Its vibrational spectrum exhibits all nine fundamentals with frequencies that are in excellent agreement with the theoretical calculations for a five-atomic V-shaped ion of C(2)(v)symmetry. The N5+ Sb(2)F(11)(-) salt was also prepared, and its crystal structure was determined. The geometry previously predicted for free gaseous N5+ from theoretical calculations was confirmed within experimental error. The Sb(2)F(11)(-) anions exhibit an unusual geometry with eclipsed SbF(4) groups due to interionic bridging with the N5+ cations. The N5+ cation is a powerful one-electron oxidizer. It readily oxidizes NO, NO(2), and Br(2) but fails to oxidize Cl(2), Xe, or O(2).  相似文献   

10.
The branching ratios and rate coefficients have been measured at 298 K for the reactions between CHCl2F, CHClF2, and CH2ClF and the following cations (with recombination energies in the range 6.3-21.6 eV); H3O+, SFx+ (x = 1-5), CFy+ (y = 1-3), NO+, NO2+, O2+, Xe+, N2O+, O+, CO2+, Kr+, CO+, N+, N2+, Ar+, F+, and Ne+. The majority of the reactions proceed at the calculated collisional rate, but the reagent ions SF3+, NO+, NO2+, and SF2+ do not react. Surprisingly, although all of the observed product channels are calculated to be endothermic, H3O+ does react with CHCl2F. On thermochemical grounds, Xe+ appears to react with these molecules only when it is in its higher-energy 2P1/2 spin-orbit state. In general, most of the reactions form products by dissociative charge transfer, but some of the reactions of CH2ClF with the lower-energy cations produce the parent cation in significant abundance. The branching ratios produced in this study and by threshold photoelectron-photoion coincidence spectroscopy agree reasonably well over the energy range 11-22 eV. In about one-fifth of the large number of reactions studied, the branching ratios are in excellent agreement and appreciable energy resonance between an excited state and the ground state of the ionized neutral exists, suggesting that these reactions proceed exclusively by a long-range charge-transfer mechanism. Upper limits for the enthalpy of formation at 298 K of SF4Cl (-637 kJ mol-1), SClF (-28 kJ mol-1), and SHF (-7 kJ mol-1) are determined.  相似文献   

11.
The reaction of Cu(NO3)2.3H2O with the ligand 1-(ferrocenemethyl)-1,4,7,10-tetraazacyclododecane (L) in acetonitrile leads to the formation of a blue complex, [Cu(L)(NO3)][NO3] (C1). The X-ray structure determination shows an unexpected binding of a nitrate anion in that the CuII center is surrounded by four N atoms of the 1,4,7,10-tetraazacyclododecane (cyclen) macrocycle and two O atoms from a chelating nitrate anion, both Cu-O distances being below the sums of the van de Waals radii. Hydrogen-bonding interactions in the crystal lattice and a weak interaction between a second nitrate O and the CuII center in C1 give rise to a highly distorted CuII geometry relative to that found in the known structure of [Cu(cyclen)(NO3)][NO3] (C5). Electrochemical studies in acetonitrile containing 0.1 M [Bu4N][NO3] as the supporting electrolyte showed that oxidation of C1 in this medium exhibits a single reversible one-electron step with a formal potential E degrees f of +85 mV vs Fc0/+ (Fc = ferrocene). This process is associated with oxidation of the ferrocenyl pendant group. Additionally, a reversible one-electron reduction reaction with an E degrees f value of -932 mV vs Fc0/+, attributed to the CuII/I redox couple, is detected. Gradual change of the supporting electrolyte from 0.1 M [Bu4N][NO3] to the poorly coordinating [Bu4N][PF6] electrolyte, at constant ionic strength, led to a positive potential shift in E degrees f values by +107 and +39 mV for the CuII/I(C1) and Fc0/+(C1) redox couples, respectively. Analysis of these electrochemical data and UV-vis spectra is consistent with the probable presence of the complexes C1, [Cu(L)(CH3CN)2]2+ (C2), [Cu(L)(CH3CN)(NO3)]+ (C3), and [Cu(L)(NO3)2] (C4) as the major species in nitrate-containing acetonitrile solutions. In weakly solvating nitromethane, the extent of nitrate complexation remains significant even at low nitrate concentrations, due to the lack of solvent competition.  相似文献   

12.
The syntheses, crystal structures, and magnetochemical characterization of five new iron clusters [Fe5O2(O2CPh)7(edte)(H2O)] (1), [Fe6O2(O2CBut)8(edteH)2] (2), [Fe12O4(OH)2(O2CMe)6(edte)4(H2O)2](ClO4)4 (3), [Fe12O4(OH)8(edte)4(H2O)2](ClO4)4 (4), and [Fe12O4(OH)8(edte)4(H2O)2](NO3)4 (5) (edteH4= N,N,N',N'-tetrakis(2-hydroxyethyl) ethylenediamine) are reported. The reaction of edteH4 with [Fe3O(O2CPh)6(H2O)3](NO3) and [Fe3O(O2CBut)6(H2O)3](OH) gave 1 and 2, respectively. Complex 3 was obtained from the reaction of edteH4 and NaO2CMe with Fe(ClO4)3, whereas 4 and 5 were obtained from the reaction of edteH4 with Fe(ClO4)3 and Fe(NO3)3, respectively. The core of 1 consists of a [Fe4(mu3-O)2]8+ butterfly unit to which is attached a fifth Fe atom by four bridging O atoms. The core of 2 consists of two triangular [Fe3(mu3-O)]7+ units linked together by six bridging O atoms. Finally, the cores of 3-5 consist of an [Fe12(mu4-O)4(mu-OH)2]26+ unit. Variable-temperature (T) and -field (H) solid-state direct and alternating current magnetization (M) studies were carried out on complexes 1-3 in the 1.8-300 K range. Analysis of the obtained data revealed that 1, 2, and 3-5 possess an S = 5/2, 5, and 0 ground-state spin, respectively. The fitting of the obtained M/N(muB) vs H/T data was carried out by matrix diagonalization, and this gave values for the axial zero-field splitting (ZFS) parameter D of -0.50 cm-1 for 1 and -0.28 cm-1 for 2.  相似文献   

13.
The interaction of NO3 free radical and N2O5 with laboratory flame soot was investigated in a Knudsen flow reactor at T = 298 K equipped with beam-sampling mass spectrometry and in situ REMPI detection of NO2 and NO. Decane (C10H22) has been used as a fuel in a co-flow device for the generation of gray and black soot from a rich and a lean diffusion flame, respectively. The gas-phase reaction products of NO3 reacting with gray soot were NO, N2O5, HONO, and HNO3 with HONO being absent on black soot. The major loss of NO3 is adsorption on gray and black soot at yields of 65 and 59%, respectively, and the main gas-phase reaction product is N2O5 owing to heterogeneous recombination of NO3 with NO2 and NO according to NO3 + {C} --> NO + products. HONO was quantitatively accounted for by the interaction of NO2 with gray soot in agreement with previous work. Product N2O5 was generated through heterogeneous recombination of NO3 with excess NO2, and the small quantity of HNO3 was explained by heterogeneous hydrolysis of N2O5. The reaction products of N2O5 on both types of soot were equimolar amounts of NO and NO2, which suggest the reaction N2O5 + {C} --> N2O3(ads) + products with N2O3(ads) decomposing into NO + NO2. The initial and steady-state uptake coefficients gamma 0 and gamma ss of both NO3 and N2O5 based on the geometric surface area continuously increase with decreasing concentration at a concentration threshold for both types of soot. gamma ss of NO3 extrapolated to [NO3] --> 0 is independent of the type of soot and is 0.33 +/- 0.06 whereas gamma ss for [N2O5] --> 0 is (2.7 +/- 1.0) x 10(-2) and (5.2 +/- 0.2) x 10(-2) for gray and black soot, respectively. Above the concentration threshold of both NO3 and N2O5, gamma ss is independent of concentration with gamma ss(NO3) = 5.0 x 10(-2) and gamma ss(N2O5) = 5.0 x 10(-3). The inverse concentration dependence of gamma below the concentration threshold reveals a complex reaction mechanism for both NO3 and N2O5. The atmospheric significance of these results is briefly discussed.  相似文献   

14.
The anions [ReX3(CO)2(NO)]- (with X = Cl, 1; X = Br, 2) have been prepared with different counterions. Complex 1 was found to lose its chloride ligands in water within 24 h. The [Re(H2O)3(CO)2(NO)]2+ cation obtained after hydrolysis is a strong acid, which consequently undergoes a slow condensation reaction in water to form the very stable [Re(mu3-O)(CO)2(NO)]4 cluster 4 at pH > 2, that precipitates from the aqueous solution and is insoluble also in organic solvents. Fast deprotonation of [Re(H2O)3(CO)2(NO)]2+ did not lead to 4 but rather to the mononuclear species [Re(OH)(H2O)2(CO)2(NO)]+. Subsequent attack of OH- at a CO group resulted in the formation of a rhenacarboxylic acid and its carboxylate anion. For solutions of even higher pH, IR spectroscopy provided evidence for the formation of a Re(C(O)ON(O)) species. These processes were found to be reversible on lowering the pH. Starting from cluster 4 it was possible to obtain complexes of the types [ReX(CO)2(NO)L2] or [Re(CO)2(NO)L3](L2 = 2-picolinate, 2,2'-bipyridine, L-phenylalanate; L3 = tris(pyrazolyl)methane, 1,4,7-trithiacyclononane) in the presence of an acid in protic solvents, but only in low yields. In further synthetic studies, complexes 1 and 2 were found to be superior starting materials for substitution reactions to form [ReX(CO)2(NO)L2] or [Re(CO)2(NO)L3] complexes.  相似文献   

15.
The product branching ratios for NO+(X 1Sigma+) and NO+(a 3Sigma+) produced from the reaction of N+ with O2 have been measured at 298 and 500 K in a selected ion flow tube. Approximately 0.5% of the total products are in NO+(a) at both temperatures, despite the fact that the reaction to form NO+(a) is 0.3 eV exothermic. High-level ab initio calculations of the potential energy surfaces for the N+ + O2 reaction show that the reaction from N+(3P) + O2(3Sigma(g)) reactants starts with an efficient early stage charge transfer to the N(2D) + O2+(X 2Pi) channel, which gives rise to the O2+(X 2Pi) product and, at the same time, serves as the starting point for all of the reaction channels leading to NO+ and O+ products. Pathways to produce NO+(a 3Sigma+) are found to be less favorable than pathways leading to the major product NO+(X 1Sigma+). Production of N(2D) has implications for the concentration of NO in the mesosphere.  相似文献   

16.
二重态的N3O2中性分子作为中间体, 在N3O2阴离子的光解离反应和NO+N2O←→N2+NO2反应中均起重要作用. 在CCSD(T)/6-311G(d,p)//B3LYP/6-311G(d,p)+ZPE的水平上, 对这两个反应进行了理论计算. 结果表明, 在N3O2阴离子的光解离反应中, 该阴离子先在光照下解离为与其具有相同的W构型的中性分子和一个电子, 这个中性分子是一个过渡态, 它将打破C2v构型变成具有Cs对称性的W型中间异构体, 然后再经过一个过渡态, 裂解成N2O+NO两个小分子. 这个裂解过程的能垒非常低(5.96 kJ/mol), 因此在实验中很难检测到W型的中间异构体. 在另一个重要的[N3O2]体系的反应(NO+N2O←→N2+NO2)中, 找到了两条反应通道, 其中不经过中间异构体的一步转化通道更为可行.  相似文献   

17.
The rate constant for the reaction of O2+ with N2 to produce NO+ plus NO has been measured at 423, 523, and 623 K in a turbulent ion flow tube. Much improved upper limits for this reaction at the three temperatures are 2, 4, and 10x10(-21) cm3 s-1, respectively. These results should render this reaction irrelevant when modeling all plasmas involving atmospheric gases.  相似文献   

18.
Adsorption of NO and coadsorption of NO and O2 on H-ZSM-5 have been studied at low and room temperature by means of FTIR spectroscopy. For better interpretation of the spectra, experiments involving isotopic labeled molecules have been performed. Low temperature adsorption of NO on H-ZSM-5 results initially in formation of NO which is H-bonded to the zeolite acidic hydroxyls. A second NO molecule is inserted into the OH-NO species at higher coverages, thus forming OH(NO)2 complexes. Different kinds of NO dimers are also formed. Negligible amounts of oxygenated compounds have been detected. In the presence of oxygen, the (di)nitrosyl species are oxidized very fast even at 100 K to N2O3, NO+, NO2, and N2O4. Different kinds of adsorbed N2O3 species have been evidenced. With increasing temperature, NO+ migrates and occupies cationic positions. The latter species interacts with NO at low temperature to give an [ONNO]+ complex. This reaction is used to prove that the different bands in the 2206-2180 cm(-1) region are also due to NO+ species.  相似文献   

19.
In relation to the heterogeneous hydrogenation of nitrite, adsorption of NO2-, NH4+, and NH2OH from the aqueous phase was examined on Pt/Al2O3, Pd/Al2O3, and Al2O3. None of the investigated inorganic nitrogen compounds adsorb on alumina at conditions presented in this study. NO2-(aq) and NH4+(aq) on the other hand show similar adsorption characteristics on both Pd/Al2O3 and Pt/Al2O3. The vibrational spectrum of the NO2- ion changed substantially upon adsorption, clearly indicating that NO2- chemisorbs onto the supported metal catalysts. On the contrary, adsorption of NH4+ does not lead to significant change in the vibrational spectrum of the ion, indicating that the NH4+ ion does not chemisorb on the noble metal but is stabilized via an electrostatic interaction. When comparing the adsorption of hydroxylamine (NH2OH(aq)) on Pd/Al2O3 and Pt/Al2O3, significant differences were observed. On Pd/Al2O3, hydroxylamine is converted into a stable NH2(ads) fragment, whereas on Pt/Al2O3 hydroxylamine is converted into NO, possibly via HNO(ads) as an intermediate.  相似文献   

20.
Calculations were performed to determine the structures, energetics, and spectroscopy of the atmospherically relevant complexes (HNO(3)).(NO(2)), (HNO(3)).(N(2)O(4)), (NO(3)(-)).(NO(2)), and (NO(3)(-)).(N(2)O(4)). The binding energies indicate that three of the four complexes are quite stable, with the most stable (NO(3)(-)).(N(2)O(4)) possessing binding energy of almost -14 kcal mol(-1). Vibrational frequencies were calculated for use in detecting the complexes by infrared and Raman spectroscopy. An ATR-FTIR experiment showed features at 1632 and 1602 cm(-1) that are attributed to NO(2) complexed to NO(3)(-) and HNO(3), respectively. The electronic states of (HNO(3)).(N(2)O(4)) and (NO(3)(-)).(N(2)O(4)) were investigated using an excited state method and it was determined that both complexes possess one low-lying excited state that is accessible through absorption of visible radiation. Evidence for the existence of (NO(3)(-)).(N(2)O(4)) was obtained from UV/vis absorption spectra of N(2)O(4) in concentrated HNO(3), which show a band at 320 nm that is blue shifted by 20 nm relative to what is observed for N(2)O(4) dissolved in organic solvents. Finally, hydrogen transfer reactions within the (HNO(3)).(NO(2)) and (HNO(3)).(N(2)O(4)) complexes leading to the formation of HONO, were investigated. In both systems the calculated potential profiles rule out a thermal mechanism, but indicate the reaction could take place following the absorption of visible radiation. We propose that these complexes are potentially important in the thermal and photochemical production of HONO observed in previous laboratory and field studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号