首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Adsorption of azo reactive dyes by metal hydroxide sludge were investigated using CI Reactive Red 2 (RR-2), CI Reactive Red 120, (RR-120), and CI Reactive Red 141 (RR-141). The adsorption isotherms, including the Langmuir constants (Q degrees and b) and the Freundlich constant (K(f)), for RR-2 decreased with increasing temperature, but this was reversed for RR-120 and RR-141. This behavior implied an exothermic process for RR-2 but an endothermic process for RR-120 and RR-141. The enthalpy value of adsorption for RR-2, RR-120, and RR-141 was -5.56, 2.77, and 6.41 kJ/mol, respectively, indicating that the adsorption of the less charged dyes (RR-2) was mainly physical, but that of the more charged dyes (RR-120 and RR-141) was chemical. The optimum system pH of 8.6+/-0.3 was maintained even when the solution pH was varied from 3 to 10. Higher concentration or more valence of anions of electrolytes in dye solution caused decreasing dye adsorption efficiency of metal hydroxide sludge. A higher dosage of sludge is required for real textile wastewater (>1% w/v) than for the synthetic dye solution (0.2% w/v). The leachates of heavy metals from metal hydroxide sludge to the environment are very low, which are within the standard limit of industrial effluent and leachable substances.  相似文献   

2.
The presence of cationic dyes, even in a tiny amount, is harmful to aquatic life and pollutes the environment. Therefore, it is essential to remove these hazardous dyes to protect the life of marine creatures from these pollutants. In this research, crystal violet (CV) dye elimination was performed using a lignin copper ferrite (LCF) adsorbent. The adsorbent was synthesized and characterized using FTIR, Raman, SEM, EDX with mapping, and VSM, which proved the successful formation of magnetic LCF. Adsorption experiments were performed using different effective parameters. The highest adsorption potential (97%) was executed at mild operating conditions, with a 5 min contact time at room temperature and pH 8. The adsorption kinetic study utilized four kinetic models: first-order, second-order, intraparticle diffusion, and Elovich. The results revealed that the adsorption process complies with the pseudo-first-order with a maximum adsorption capacity of 34.129 mg/g, proving that the adsorption process mechanism is a physical adsorption process. Three isotherm models, Langmuir, Freundlich, and Temkin, were examined. The adsorption mechanism of CV onto LCF was also followed by the Langmuir and Freundlich models. The thermodynamic parameters were examined and revealed that the adsorption onto LCF was an exothermic process. It was proposed that the adsorption process is a spontaneous exothermic process. LCF appears to forcefully remove toxic CV dye from textile wastewater.  相似文献   

3.
Waste material (carbon slurry), from fuel oil-based generators, was used as adsorbent for the removal of two reactive dyes from synthetic textile wastewater. The study describes the results of batch experiments on removal of Vertigo Blue 49 and Orange DNA13 from synthetic textile wastewater onto activated carbon slurry. The utility of waste material in adsorbing reactive dyes from aqueous solutions has been studied as a function of contact time, temperature, pH, and initial dye concentrations by batch experiments. pH 7.0 was found suitable for maximum removal of Vertigo Blue 49 and Orange DNA13. Dye adsorption capacities of carbon slurry for the Vertigo Blue 49 and the Orange DNA13 were 11.57 and 4.54 mg g(-1) adsorbent, respectively. The adsorption isotherms for both dyes were better described by the Langmuir isotherm. Thermodynamic treatment of adsorption data showed an exothermic nature of adsorption with both dyes. The dye uptake process was found to follow second-order kinetics.  相似文献   

4.
Acrylamide (AAm)‐2‐acrylamide‐2‐methylpropanesulfonic acid sodium salt (AMPSNa) hydrogel and AAm‐AMPSNa/clay hydrogel nanocomposite having 10 w% clay was prepared by in situ copolymerization in aqueous solution in the presence of a crosslinking agent (N,N′‐methylenebisacrylamide (NMBA)). Swelling properties and kinetics of the hydrogel samples were investigated in water and aqueous solutions of the Safranine‐T (ST) and Brilliant Cresyl Blue (BCB) dyes. The swelling and diffusion parameters were also calculated in water and dye solutions. It was observed that the AAm‐AMPSNa/clay hydrogel nanocomposite exhibits improved swelling capacity compared with the AAm‐AMPSNa hydrogel. It was also found that the diffusion mechanisms show non‐Fickian character. Adsorption properties of the hydrogel samples in the aqueous solution of ST and BCB dyes were also investigated. Clay incorporation into the hydrogel structure increased not only the adsorption capacity but also the adsorption rate. Adsorption capacity values of the hydrogel nanocomposite were found to be 484.2 and 494.2 mg g?1 for the ST and BCB dyes, respectively. It was seen that the adsorption of dyes by the hydrogel nanocomposite completed in 10 min while the AAm‐AMPSNa hydrogel adsorbed dyes approximately in 90 min. Adsorption data of the samples were modelled by the pseudo‐first‐order and pseudo‐second‐order kinetic equations in order to investigate dye adsorption mechanism. It was found that the adsorption kinetics of hydrogel nanocomposite followed a pseudo‐second‐order model. Equilibrium isotherms were analyzed using the Langmuir and Freundlich isotherms. It was seen that the Langmuir model fits the adsorption data better than the Freundlich model. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
Quartzite obtained from local source was investigated for the removal of anionic dye congo red (CR) and cationic dye malachite green (MG) as an adsorbent from aqueous solution in batch experiment. The adsorption process was studied as a function of dye concentration, contact time, pH and temperature. Adsorption process was described well by Langmuir and Freundlich isotherms. The adsorption capacity remained 666.7 mg/g for CR dye and 348.125 mg/g for MG dye. Data was analyzed thermodynamically, ΔH0 and ΔG0 values proved that adsorption of CR and MG is an endothermic and spontaneous process. Adsorption data fitted best in the pseudo-first order kinetic model. The adsorption data proved that quartzite exhibits the best adsorption capacity and can be utilized for the removal of anionic and cationic dyes.  相似文献   

6.
Adsorption characteristics of cross-linked lysozyme crystals of different morphologies (tetragonal, orthorhombic, triclinic and monoclinic) were examined using four anionic dyes (fluorescein, eosin, erythrosin, and rose bengal), one zwitterionic dye (rhodamine B), and one cationic dye (rhodamine 6G). The adsorption isotherms were of the Langmuir type for all examined systems with the exception of rhodamine B adsorption by monoclinic crystals. The weakest adsorption was observed for the cationic dye, rhodamine B, whereas dianionic dyes, eosin, rose bengal, and erythrosin were strongly adsorbed on the protein surface. The adsorption capacities of the crystals for the dyes were found to depend on both charge and hydrophobicity of the dye, reflecting the heterogeneous character of the lysozyme pore surface. The adsorption affinity of the crystals for the dyes was a function of the dyes' hydrophobicity. Furthermore, the crystal morphology was identified as an additional factor determining capacity and affinity for dye adsorption. Differences between crystals prepared in the presence of the same precipitant were lower than between morphologies prepared with different precipitants.  相似文献   

7.
Pollution caused by organic dyes is of serious environmental and health concern to the population. Dyes are widely used in textile coloring applications. In the present work, cotton textile was coated with a conducting polymer, polypyrrole (PPy), in situ during the oxidative polymerization of pyrrole. The resulting materials were utilized as easily separated and recyclable adsorbent for the removal of methylene blue (MB) as a model of cationic dyes in alkaline solutions. It showed also some affinity to remove Acid Green 25 as an anionic dye in acidic medium. The adsorption was assessed by monitoring the decrease in dye concentration by UV–Visible absorption spectroscopy. The influence of various parameters such as initial dye concentration, contact time, pH, temperature, and adsorbent dose on the adsorption process was studied. The pseudo-second-order kinetic model and Freundlich isotherm model were found to describe the adsorption process. The thermodynamic study revealed that the adsorption of MB by PPy was feasible, spontaneous, and exothermic process. Investigation of the substrate regeneration revealed that PPy deposited on cotton textile can be reused for dye adsorption several times with good efficiency and it allows for the recovery of MB for recycling purposes.  相似文献   

8.
Azo dyes are one of the synthetic dyes that have been used in many textile industries. Azo dye and their intermediate products are toxic, carcinogenic, and mutagenic to aquatic life. Removal of azo dyes is one of the main challenges before releasing the wastes discharged by textile industries. Photocatalytic degradation of azo dyes by nanoparticles is one of the environment‐friendly methods used for the removal of dyes from textile effluents. Therefore, this study focused on degradation of azo dye, Direct Red 264. Photocatalytic degradation of DR 264 azo dye was investigated using CdS and Ag/CdS nanoparticles immobilized on a cement bed in a continuous‐flow photoreactor under UV‐C exposure. The effect of the parameters of type and mass of catalyst, temperature, flow rate, dye concentration, and light intensity were evaluated for azo dye removal. Under optimal conditions, photocatalytic degradation of DR 264 azo dye using Ag/CdS nanoparticles immobilized on a cement bed in a continuous‐flow photoreactor obtained an efficiency of 99.99%. A developed kinetic model was proposed based on the intrinsic elementary reactions. The proposed model is in a good agreement with the Langmuir–Hinshelwood (L–H) equation. The pseudo–steady‐state approximation has considered for the concentration of hydroxyl radicals associated with the L–H model under certain conditions and explains consistently the dependence of the apparent kinetic parameter, kobs (the reaction rate constant), and KR (the adsorption equilibrium constant) with the light intensity. Based on the model, kobs for Ag/CdS was greater than the CdS nanoparticles.  相似文献   

9.
本文研究了三个光谱增感染料及其组合在一些溶液中的吸收光谱和吸附态染料的反射光谱,得到25℃在几种溶剂的溴化银分散系中的吸附等温线,并采用精密量热技术测量了微小吸附热效应,得到25±0.01℃染料Ⅰ在溴化银水悬浮液中被吸附的等位摩尔吸附焓△H298-(335±2.5)kJ/mol(表面覆盖度θ=0.94)。结合对染料组合的光吸收、吸附以及吸附热等的测试结果,对照相乳剂生产中采用的先加入感绿染料Ⅱ、Ⅲ,后加入感红染料Ⅰ的步序,从吸附角度作了初步的理论探讨。研究结果也表明,精密量热技术与光吸收测量等手段相结合,将有助于在乳剂制备过程中分析研究染料的增感效果。  相似文献   

10.
The use of low-cost and ecofriendly adsorbents has been investigated as an ideal alternative to the current expensive methods of removing dyes from wastewater. Orange peel was collected from the fields of orange trees in the north of Iran and converted into a low-cost adsorbent. This paper deals with the removal of textile dyes from aqueous solutions by orange peel. Direct Red 23 (DR23) and Direct Red 80 (DR80) were used as model compounds. The adsorption capacity Q0 was 10.72 and 21.05 mg/g at initial pH 2. The effects of initial dye concentration (50, 75, 100, 125 mg/l), pH, mixing rate, contact time, and quantity of orange peel have been studied at 25 degrees C. The Langmuir and Freundlich models were used for this study. It was found that the experimental results show that the Langmuir equation fit better than the Freundlich equation. The results indicate that acidic pH supported the adsorption of both dyes on the adsorbent. Orange peel with concentrations of 8 and 4 g/l has shown adsorption efficiencies of about 92 and 91% for DR23 and DR80, respectively. Furthermore, adsorption kinetics of both dyes was studied and the rates of sorption were found to conform to pseudo-second-order kinetics with a good correlation (R > or = 0.998). Maximum desorption of 97.7% for DR23 and 93% for DR80 were achieved in aqueous solution at pH 2. Finally, the effect of adsorbent surface was analyzed by scanning electron microscope (SEM). SEM images showed reasonable agreement with adsorption measurements.  相似文献   

11.
The purpose of this work is to study the possibility of anionic dyes Reactive Red M-8B(RR) and Direct Green B(DG) adsorbed on chitosan-modified diatomite. The characteristics of adsorbent, adsorption isotherms and the influence of adsorption time, temperature and pH were researched in this work. The results show that the mo- dified diatomite had a much better adsorption capability than the natural diatomite. The adsorption capacities of chitosan-modified diatomite for RR and DG were 94.46 and 137.0 mg/g, respectively. Both adsorption time and adsorption temperature provided a positive effect on the dye adsorption. Within the experimental pH range, the adsorbance was enhanced at lower pH but reduced sharply at high pH. On the basis of the experimental results and discussion, electrostatic attraction is considered as the main mechanism of this chemisorption.  相似文献   

12.
A surface tension technique was used to determine the critical aggregation concentration (cac) of a yellow and a red dye in relation to the presence of the anionic surfactant sodium dodecylbenzene sulfonate (DBS) and to temperature changes in buffered aqueous solutions. The cac values of the yellow dye increase from 25 to 45 degrees C (from 41.37 to 50.32 mg L-1) and decrease from 45 to 55 degrees C (from 50.32 to 38.72 mg L-1). The cac values for the red dye/DBS aggregates decrease (from 124.52 to 88.50 mg L-1) from 25 to 55 degrees C. Adsorption of the two dyes onto a mesoporous aminopropyl silica (Sil-NH2) was also studied. The adsorption of the yellow dye increases with an increase in temperature from 25 to 55 degrees C. In the presence of DBS the adsorption on Sil-NH2 for the yellow dye decreases, and for the red dye increases from 25 to 55 degrees C. Adsorptions occurred below and above the cac of the anionic dyes/DBS aggregates. Adsorption of the dyes onto Sil-NH2 fitted well to the Langmuir, Freundlich, and Redlich-Peterson adsorption models. However, in the presence of DBS, only the Freundlich model fit the experimental adsorption data at low dye concentrations (less than 400 mg L-1). In this case, the Redlich-Peterson model was only fitted to the red dye adsorption data. The magnitude of the Dubinin-Radushkevich energetic parameters (E, from 7.00 to 15.00 kJ mol-1) indicates that the adsorption of the dyes onto Sil-NH2, in the absence and in the presence of DBS, is controlled by water adsorbed/dye in solution ion-exchange interactions. It is observed that the values of DeltaadsH are positive for both dyes and the values are quite similar to each other. The exception is the adsorption of the yellow dye in the presence of DBS, which is slightly exothermic. The DeltaadsG values are all negative. However, the interactions of the dyes with Sil-NH2 silica are more spontaneous in the presence of the surfactant. The positive adsorption entropy values (DeltaadsS) for the interaction of the dyes suggest that entropy is a driving force of the dye adsorptions. However, the entropic contribution is higher for the adsorptions in the presence of DBS. It was suggested that the chemical structures of the dyes play an important role in the formation of the dye/DBS aggregates and in dye adsorption onto the aminopropyl silica.  相似文献   

13.
Selective polymeric extractants were prepared for preconcentration of Cibacron reactive red dye, a dye that is often applied with Cibacron reactive blue and Cibacron reactive yellow for dyeing of fabrics. The best extractant was fabricated (in chloroform) using methacrylic acid (as monomer), ethylene glycol dimethacrylate (as crosslinker), AIBN (as initiator for polymerization), and red dye as template molecule, with a molar stoichiometric ratio of 8.0:40.0:2.5:0.63, respectively. The structure of the molecularly imprinted polymer (MIP) was robust, and resisted dissolution up to 260 °C. Compared with the un-imprinted polymer, the imprinted product has a large specific surface area which improved its adsorption capacity. The effect of imprinting was obvious from the adsorption capacity measured at pH 4 for red dye (the imprinted molecule), which was increased from 24.0 to 79.3 mg g−1 after imprinting. Equilibrium adsorption studies revealed that the dye-imprinted-polymer enables efficient extraction of red dye even in the presence of blue and yellow dyes which have similar chemical natures to the red dye. The selectivity coefficients S red dye/dye, were 13.9 and 17.1 relative to the yellow and blue dyes, respectively. The MIP was found to be effective for red dye preconcentration, with a preconcentration factor of 100, from tap water and treated textile wastewater. The factors affecting extraction of red dye by the MIP were studied and optimized. Under the optimized extraction conditions, red dye was selectively quantified in the presence of other competing dyes at a concentration of 20 μg L−1 from different water systems with satisfactory recoveries (91–95%) and RSD values (∼5.0%).  相似文献   

14.
Functionalized mesoporous MCM-41 silica was subjected to adsorption and release studies of encapsulated guest molecules of three chosen dyes. These mesoporous systems were composed of three different capping reagents introduced by grafting method on the silica surface to control the release of dye molecules at two different pH values. The amounts of dyes adsorbed on the silica surface were measured using ultraviolet-visible (UV-VIS) spectrophotometry. The efficiency of grafting was calculated on the basis of differential thermal analysis (TG) results and elemental analysis. The release profiles were determined for all obtained systems using USP Dissolution Apparatus 2. Adsorption of the two azo dyes used was the most efficient after the positively charged functionalization and lower after functionalization with neutral and negatively charged capping reagents, while the phthalocyanine dye adsorption was almost functionalization-independent. Grafting efficiency was the highest for neutral capping reagent and much lower for electrically charged molecules of other reagents. Release studies showed clearly that desorption was pH-dependent for azo dyes and pH independent for Alcian Blue. The adsorption and release seem to be connected with the electrical charge of all constituents of these systems. Results obtained can be used for further analysis of different electrically charged molecules.   相似文献   

15.
Adsorption of reactive dyes on titania-silica mesoporous materials   总被引:5,自引:0,他引:5  
This paper presents a study on the adsorption of two basic dyes, methylene blue (MB) and rhodamine B (RhB), from aqueous solution onto mesoporous silica-titania materials. The effect of dye structure, adsorbent particle size, TiO(2) presence, and temperature on adsorption was investigated. Adsorption data obtained at different solution temperatures (25, 35, and 45 degrees C) revealed an irreversible adsorption that decreased with the increment of T. The presence of TiO(2) augmented the adsorption capacity (q(e)). This would be due to possible degradation of the dye molecule in contact with the TiO(2) particles in the adsorbent interior. The adsorption enthalpy was relatively high, indicating that interaction between the sorbent and the adsorbate molecules was not only physical but chemical. Both Langmuir and Freundlich isotherm equations were applied to the experimental data. The obtained parameters and correlation coefficients showed that the adsorption of the two reactive dyes (MB and RhB) on the adsorbent systems at the three work temperatures was best predicted by the Langmuir isotherm, but not in all cases. The kinetic adsorption data were processed by the application of two simplified kinetic models, first and second order, to investigate the adsorption mechanism. It was found that the adsorption kinetics of methylene blue and rhodamine B onto the mesoporous silica-titania materials surface under different operating conditions was best described by the first-order model.  相似文献   

16.
The adsorption of methylene blue and crystal violet on pumice powder samples of varying compositions was investigated using a batch adsorption technique. The effects of various experimental parameters, such as adsorbent dosage, initial dye concentration, and contact time, were also investigated. The extent of dye removal increased with decreased initial concentration of the dye and also increased with increased contact time and amount of adsorbent used. Adsorption data were modeled using the Freundlich adsorption isotherm. The adsorption kinetic of methylene blue and crystal violet could be described by the pseudo-second-order reaction model.  相似文献   

17.
本文以自制柚子皮生物质活性炭为原料,采用凝胶-溶胶法合成TiO2/柚子皮生物质活性炭复合材料(TiO2/BAC)。对复合材料进行SEM、FTIR、XRD等表征,并研究该复合材料对中性红、亚甲基蓝染料及甲醛的吸附降解性能。结果表明,在复合材料中柚子皮生物质活性炭的添加量为7 g、预吸附时间为2 h时,对染料具有最佳的吸附降解效果,复合材料在循环使用5次后对染料的吸附降解率仍达到了80 %以上。当活性炭的添加量为6 g、复合材料的添加量为2 g时,复合材料对甲醛的吸附降解达到最大,可达61%。表明该复合材料对中性红、亚甲基蓝染料及甲醛具有良好的吸附降解效果,有望用于废水染料的去除和家居甲醛净化。  相似文献   

18.
羧基化石墨烯对4种离子型染料的吸附脱色   总被引:1,自引:0,他引:1  
吕莎莎  危晶  江峰  王邃 《应用化学》2013,30(10):1215-1221
合成的羧基化石墨烯(G-COOH)用FT-IR进行表征,并对G-COOH用于水溶液中甲基紫、中性红、灿烂黄和茜素红4种离子型染料的吸附性能进行了研究。 考察了吸附剂用量、吸附时间、初始浓度以及溶液pH值等条件对吸附效果的影响。 同时,研究了甲基紫染料的脱附性能,结果表明,用NaOH/EtOH混合溶液洗脱甲基紫,洗脱率可达88.2%,洗脱后的G-COOH可再利用。 从热力学角度探讨得出,G-COOH对阳离子染料甲基紫和中性红的吸附行为能够较好的符合Langmuir等温吸附模型,而对阴离子染料灿烂黄和茜素红的吸附行为则能够较好的符合Freundlich等温吸附模型,计算的吸附参数表明,G-COOH对4种染料的吸附过程容易进行。 动力学研究表明,G-COOH对4种离子型染料的吸附行为均能较好的符合准二级吸附模型。 该实验研究表明,在处理染料废水时,G-COOH为相当优异的吸附剂。  相似文献   

19.
In this work, application of polyaniline coated onto wood sawdust (PAni/SD) for the removal of methyl orange (MO) as a typical azo dye from aqueous solutions is introduced. The effects of some important parameters such as pH, initial concentration, sorbent dosage, and contact time on the uptake of MO solution were also investigated. In order to get a better comparison, adsorption experiments were also carried out using commercial grade of granulated activated carbon (GAC) and sawdust without coating (SD) at the same time. It was found that PAni/SD can be used to remove azo dyes such as MO from aqueous solutions very efficiently. Experimental data were analyzed by the Langmuir and Freundlich models of adsorption. Kinetic parameters for the adsorption of MO dyes for the selected adsorbents are also reported. In order to study the possibility of desorption for frequent application, chemical regeneration of the used adsorbents was also investigated. Desorption or recovery of dye and regeneration of adsorbent (PAni/SD) was found to be quite possible and of high performance. Application of modified sawdust with polyaniline for the removal of azo dye is very promising for textile wastewater treatment.  相似文献   

20.
This study attempted to improve the adsorption performance of calcined diatomite for the removal of colour from wastewaters through modification with microemulsions. The surface area, pHZPC, Fourier transform infrared (FTIR) of calcined diatomite and μE-CD were studied. It is found that an increase in the BET surface area, pHZPC and total pore volume after modification was obtained. A decrease in average pore volume was observed after modification. This suggests that the pore opening deceased to be in the micro- and meso-pore region hence the adsorption capacity for the modified adsorbent will be enhanced by reducing the escaping of dye molecules. The influence of concentration, pH and particle size on the adsorption capacities of methylene blue (MB), hydrolysed reactive black (RB) and hydrolysed reactive yellow (RY) was investigated. It was concluded from FTIR and pH analysis that the predominant mechanism of RY molecules onto μE-CD is by an electrostatic attraction between the carboxylate anion and the dye. In the case of MB and RB, the adsorption mechanism could be a combination of different mechanisms such as electrostatic attraction, capturing by microemulsion micelles in the pores of the calcined diatomite or the hydrophobic attraction. The adsorption capacities were higher than unmodified calcined diatomite. In the case of adsorption of MB molecules, a high adsorption capacity onto μE-CD was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号