首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the performance of nine ionic liquids (ILs) as thermodynamic hydrate inhibitors is investigated. The dissociation temperature is determined for methane gas hydrates using a high pressure micro deferential scanning calorimeter between (3.6 and 11.2) MPa. All the aqueous IL solutions are studied at a mass fraction of 0.10. The performance of the two best ILs is further investigated at various concentrations. Electrical conductivity and pH of these aqueous IL solutions (0.10 mass fraction) are also measured. The enthalpy of gas hydrate dissociation is calculated by the Clausius–Clapeyron equation. It is found that the ILs shift the methane hydrate (liquid + vapour) equilibrium curve (HLVE) to lower temperature and higher pressure. Our results indicate 1-(2-hydroxyethyl) 3-methylimidazolium chloride is the best among the ILs studied as a thermodynamic hydrate inhibitor. A statistical analysis reveals there is a moderate correlation between electrical conductivity and the efficiency of the IL as a gas hydrate inhibitor. The average enthalpies of methane hydrate dissociation in the presence of these ILs are found to be in the range of (57.0 to 59.1) kJ  mol−1. There is no significant difference between the dissociation enthalpy of methane hydrate either in the presence or in absence of ILs.  相似文献   

2.
《Fluid Phase Equilibria》2005,238(1):95-105
Experimental vapor–liquid equilibrium data of the ternary system composed of methane and an equimolar hexane + decane mixture are reported. The experimental measurements were carried out under isothermal conditions at 258, 273, and 298 K in the pressure range 1–19 MPa. Also, experimental vapor–liquid measurements were carried out for the quaternary system methane + nitrogen and an equimolar hexane + decane mixture, at 258 K in the range 3.5–12 MPa. The results for the ternary system show that the solubility of methane in the equimolar mixture of alkanes increases when the pressure is increased at constant temperature and it increases as the temperature decreases in the whole pressure range studied. For the quaternary system with a constant amount of nitrogen, the solubility of methane in the liquid phase increases as the pressure increases at the studied temperature. The experimental results for the ternary system were satisfactorily correlated with the Peng–Robinson equation of state in the ranges of pressure and temperature studied. The equation of state was used to predict the behavior of the quaternary system using binary interaction parameters. The applicability of the principle of congruence was corroborated by comparing the vapor–liquid behavior of methane in the equimolar hexane + decane mixture with that in pure octane, at the three temperatures studied in this work.  相似文献   

3.
The application of semi-clathrate hydrate formation technology for gas separation purposes has gained much attention in recent years. Consequently, there is a demand for experimental data for relevant semi-clathrate hydrate phase equilibria. In this work, semi-clathrate hydrate dissociation conditions for the system comprising mixtures of {CO2 (0.151/0.399 mole fraction) + N2 (0.849/0.601 mole fraction) + 0.05, 0.15, and 0.30 mass fraction tetra-n-butylammonium bromide (TBAB)} aqueous solutions have been measured and are reported. An experimental apparatus which was designed and built in-house was used for the measurements using the isochoric pressure-search method. The range of conditions for the measurements was from 277.1 K to 293.2 K for temperature and pressures up to 16.21 MPa. The phase equilibrium data measured demonstrate the high hydrate promotion effects of TBAB aqueous solutions.  相似文献   

4.
《Fluid Phase Equilibria》2004,218(2):235-238
The four-phase equilibria were measured for the methylcyclopentane+methane+H2O hydrate system (274.28–287.40 K, 1.75–9.34 MPa) and the cyclooctane+methane+H2O hydrate system (274.08–288.57 K, 1.60–9.33 MPa). Each structure-H hydrate has the lower equilibrium pressure than the pure methane structure-I hydrate in the temperature range of the present work. The isothermal equilibrium pressures of both methylcyclopentane and cyclooctane hydrates are slightly higher than that of methylcyclohexane hydrate.  相似文献   

5.
The three-phase equilibrium conditions of ternary (hydrogen + tert-butylamine + water) system were first measured under high-pressure in a “full view” sapphire cell. The tert-butylamine–hydrogen binary hydrate phase transition points were obtained through determining the points of intersection of three phases (H–Lw–V) to two phases (Lw–V) experimentally. Measurements were made using an isochoric method. Firstly, (tetrahydrofuran + hydrogen) binary hydrate phase equilibrium data were determined with this method and compared with the corresponding experimental data reported in the literatures and the acceptable agreements demonstrated the reliability of the experimental method used in this work. The experimental investigation on (tert-butylamine + hydrogen) binary hydrate phase equilibrium was then carried out within the temperature range of (268.4 to 274.7) K and in the pressure range of (9.54 to 29.95) MPa at (0.0556, 0.0886, 0.0975, and 0.13) mole fraction of tert-butylamine. The three-phase equilibrium curve (H + Lw + V) was found to be dependent on the concentration of tert-butylamine solution. Dissociation experimental results showed that tert-butylamine as a hydrate former shifted hydrate stability region to lower pressure and higher temperature.  相似文献   

6.
Natural gas hydrates are ice-like inclusion compounds that form at high pressures and low temperatures in the presence of water and light hydrocarbons. Hydrate formation conditions are favorable in gas and oil pipelines, and their formation threatens gas and oil production. Thermodynamic hydrate inhibitors (THIs) are chemicals (e.g., methanol, monoethylene glycol) deployed in gas pipelines to depress the equilibrium temperature required for hydrate formation. This work presents a novel application of a stepwise differential scanning calorimeter (DSC) measurement to accurately determine the methane hydrate phase boundary in the presence of THIs. The scheme is first validated on a model (ice + salt water) system, and then generalized to measure hydrate equilibrium temperatures for pure systems and 0.035 mass fraction NaCl solutions diluted to 0, 0.05, 0.10, and 0.20 mass fraction methanol. The hydrate equilibrium temperatures are measured at methane pressures from (7.0 to 20.0) MPa. The measured equilibrium temperatures are compared to values computed by the predictive hydrate equilibrium tool CSMGem.  相似文献   

7.
《Fluid Phase Equilibria》2006,245(2):134-139
The vapor-hydrate equilibria were studied experimentally in detail for CH4 + C2H4 + tetrahydrofuran (THF) + water systems in the temperature range of 273.15–282.15 K, pressure range of 2.0–4.5 MPa, the initial gas–liquid volume ratio range of 45–170 standard volumes of gas per volume of liquid and THF concentration range of 4–12 mol%. The results demonstrated that, because of the presence of THF, ethylene was remarkably enriched in vapor phase instead of being enriched in hydrate phase for CH4 + C2H4 + water system. This conclusion is of industrial significance; it implies that it is feasible to enrich ethylene from gas mixture, e.g., various kinds of refinery gases or cracking gases in ethylene plant, by forming hydrate.  相似文献   

8.
In this work, the phase equilibria of clathrate hydrates of methane in the presence of pure water and 0.035 mass fraction of methanol aqueous solution in confined silica gel pores with (10 and 15) nm mean diameters are measured and reported. A thermodynamic model is also developed for prediction of the obtained experimental hydrate dissociation data. The Valderrama–Patel–Teja (VPT-EoS) equation of state (EoS) accompanied with the non-density dependent (NDD) mixing rules coupled with a previously developed activity model are applied to evaluate the fugacity of the species present and the activity coefficient of water in methanol aqueous solution. Acceptable agreement between the reported data and the predicted results using the proposed model and an existing method reported in the literature demonstrates the reliability of the presented model.  相似文献   

9.
《Fluid Phase Equilibria》2005,235(1):112-121
A method for predicting the location of a dissociation condition on an H–Lw–V line under isochoric operation was presented. To establish the method, the governing equations for the H–Lw–V coexistence under isochoric conditions were derived. Here, a liquid and a vapor phase were expressed by the PR EOS + MHV2 model and a hydrate phase by the van der Waals–Platteeuw model. The molar volume of the vapor phase was calculated from the equation of state, and a simple expression for the molar volume of the hydrate phase was derived. Then, to prove the validity of the proposed method, experimental studies about the dissociation process of the hydrates were performed. The temperature and pressure traces in the hydrate dissociation process, including the location of the dissociation condition, were successfully predicted by the proposed method. In addition, the thermodynamic consistency among the phase models was discussed. It was pointed out that agreement between the calculated and experimental results about the H–Lw–V equilibrium line did not ensure thermodynamic consistency among the phase models.  相似文献   

10.
This paper reports the measured hydrate phase equilibria of simulated flue gas (12.6 vol% CO2, 80.5 vol% N2, 6.9 vol% O2) in the presence of tetra-n-butyl ammonium bromide (TBAB) or tri-n-butylphosphine oxide (TBPO), at (0, 5 and 26) wt%, respectively. The measurements of the phase boundary between (hydrate + liquid + vapor) (H + L + V) phases and (liquid + vapor) (L + V) phases were performed within the temperature range (275.97 to 293.99) K and pressure range (1.56 to 18.78) MPa with using the isochoric step-heating pressure search method. It was found that addition of TBAB or TBPO allowed the incipient equilibrium hydrate formation conditions for the flue gas to become milder. Compared to TBAB, TBPO was largely more effective in reducing the phase equilibrium pressure.  相似文献   

11.
The separation of methane and ethane through forming hydrate is a possible choice in natural gas, oil processing, or ethylene producing. The hydrate formation conditions of five groups of (methane + ethane) binary gas mixtures in the presence of 0.06 mole fraction tetrahydrofuran (THF) in water were obtained at temperatures ranging from (277.7 to 288.2) K. In most cases, the presence of THF in water can lower the hydrate formation pressure of (methane + ethane) remarkably. However, when the composition of ethane is as high as 0.832, it is more difficult to form hydrate than without THF system. Phase equilibrium model for hydrates containing THF was developed based on a two-step hydrate formation mechanism. The structure of hydrates formed from (methane + ethane + THF + water) system was also determined by Raman spectroscopy. When THF concentration in initial aqueous solution was only 0.06 mole fraction, the coexistence of structure I hydrate dominated by ethane and structure II hydrate dominated by THF in the hydrate sample was clearly demonstrated by Raman spectroscopic data. On the contrary, only structure II hydrate existed in the hydrate sample formed from (methane + ethane + THF + water) system when THF concentration in initial aqueous solution was increased to 0.10 mole fraction. It indicated that higher THF concentration inhibited the formation of structure I hydrate dominated by ethane and therefore lowered the trapping of ethane in hydrate. It implies a very promising method to increase the separation efficiency of methane and ethane.  相似文献   

12.
The (vapor + liquid) equilibrium data for binary systems of (methane + methanol), (methane + ethanol), and (methane + 1-propanol) at ambient temperature over a wide range of pressures, (1 to 8) MPa, were measured using a designed pressure–volume–temperature (PVT) apparatus. The phase composition and saturated density of liquid phase were measured for each pressure. The density of pure methanol, ethanol and 1-propanol was also measured at ambient temperature over a wide range of pressure (1 to 10) MPa. The experimental (vapor + liquid) equilibrium data were compared with the modeling results obtained using the Peng–Robinson and Soave–Redlich–Kwong equations of state. To improve the predictions, the binary interaction parameters were adjusted and the volume translation technique was applied. Both equations of state were found to be capable of describing the phase equilibria of these systems over the range of studied conditions. The Soave–Redlich–Kwong equation of state gave better predictions of saturated liquid densities than Peng–Robinson equation of state.  相似文献   

13.
In the present work, the three- and four-phase hydrate equilibria of (carbon dioxide (CO2) + tetrahydrofuran (THF) + water) system are measured by using Cailletet equipment in the temperature and pressure range of (272 to 292) K and (1.0 to 7.5) MPa, respectively, at different CO2 concentration. Throughout the study, the concentration of THF is kept constant at 5 mol% in the aqueous solution. In addition, the fluid phase transitions of LW–LV–V  LW–LV (bubble point) and LW–LV–V  LW–V (dew point) are determined when they are present in the ternary system. For comparison, the three-phase hydrate equilibria of binary (CO2 + H2O) are also measured. Experimental measurements show that the addition of THF as a hydrate promoter extends hydrate stability region by elevating the hydrate equilibrium temperature at a specified pressure. The three-phase equilibrium line H–LW–V is found to be independent of the overall concentration of CO2. Contradictory, at higher pressure, the phase equilibria of the systems are significantly influenced by the overall concentration of CO2 in the systems. A liquid–liquid phase split is observed at overall concentration of CO2 as low as 3 mol% at elevated pressure. The region is bounded by the bubble-points line (LW–LV–V  LW–LV), dew points line (LW–LV–V  LW + V) and the four-phase equilibrium line (H + LW + LV + V). At higher overall concentration of CO2 in the ternary system, experimental measurements show that pseudo-retrograde behaviour exists at pressure between (2.5 and 5) MPa at temperature of 290.8 K.  相似文献   

14.
A study of the (difluoromethane + water) system was conducted at temperatures between (255 and 298) K, and pressures from (0.06 to 1.30) MPa. The solubility of difluoromethane in liquid water was measured from (280 to 298) K, at pressures up to the hydrate formation pressure. The (p, T) behavior of the (liquid + hydrate + vapor) three-phase equilibrium was measured from (274 to 292) K. The (p, T) behavior of the (ice + hydrate + vapor) three-phase equilibrium was measured from (257 to 273) K. Solubility-corrected enthalpies of dissociation were determined at the lower quadruple point (Q1) using the Clapeyron equation. The de Forcrand method was used to determine the hydration number of the hydrate at Q1. The results show that not all of the cages in the SI hydrate structure are filled.  相似文献   

15.
Isothermal three-phase equilibria of gas, aqueous, and hydrate phases for the {xenon (Xe) + cyclopropane (c-C3H6)} mixed-gas hydrate system were measured at two different temperatures (279.15 and 289.15) K. The structural phase transitions from structure-I to structure-II and back to structure-I, depending on the mole fraction of guest mixtures, occur in the (Xe + c-C3H6) mixed-gas hydrate system. The isothermal pressure–composition relations have two local pressure minima. The most important characteristic in the (Xe + c-C3H6) mixed-gas hydrate system is that the equilibrium pressure–composition relations exhibit the complex phase behavior involving two structural phase transitions and two homogeneous negative azeotropes. One of two structural phase transitions exhibits the heterogeneous azeotropic-like behavior.  相似文献   

16.
A designed pressure–volume–temperature (PVT) apparatus has been used to measure the (vapor + liquid) equilibrium properties of three binary mixtures (methane +, ethane +, and carbon dioxide + 1-butanol) at two temperatures (303 and 323) K and at the pressures up to 6 MPa. The solubility of the compressed gases in 1-butanol and the saturated liquid densities and viscosities were measured. In addition, the density and viscosity of pure 1-butanol were measured at two temperatures (303 and 323) K and at the pressures up to 10 MPa. The experimental results show that the solubility of the gases in 1-butanol increases with pressure and decreases with temperature. The dissolution of gases in 1-butanol causes a decline in the viscosity of liquid phase. The saturated liquid density follows a decreasing trend with the solubility of methane and ethane. However, the dissolution of carbon dioxide in 1-butanol leads to an increase in the density of liquid phase. The experimental data are well correlated with Soave–Redlich–Kwong (SRK) and Peng–Robinson (PR) equations of state (EOSs). SRK EOS was slightly superior for correlating the saturated liquid densities.  相似文献   

17.
We describe a new apparatus suitable for measurements of the phase behaviour and phase properties of fluid mixtures under conditions of high-pressure. We propose a synthetic method for the determination of gas solubility, and present results for the system (CO2 + H2O). In addition, we report new measurements of the hydrate equilibrium curves in aqueous systems containing either pure carbon dioxide or mixed gases including CO2. For hydrates formed in the (CO2 + H2O) system, we find an enthalpy of dissociation of 77 kJ · mol?1. This value was unchanged by the addition of mass fraction 0.043 of NaCl to the water. Compared with pure CO2, mixtures of CO2 with air exhibited markedly different dissociation pressures at given temperature, but were characterised by the same enthalpy of dissociation. However, two mixtures containing either nitrogen or methane and hydrogen both exhibited a higher enthalpy of dissociation, 106 kJ · mol?1, consistent with these systems forming structure II hydrates.  相似文献   

18.
This study presents experimental kinetic and thermodynamic data for CF4 clathrate hydrates. Experimental measurements were undertaken in a high pressure equilibrium cell with a 40 cm3 inner volume. The measurements of experimental hydrate dissociation conditions were performed in the temperature range of (273.8 to 278.3) K and pressures ranging from (4.55 to 11.57) MPa. A thermodynamic model based on van der Waals and Platteeuw (vdW–P) solid solution theory was used for prediction and comparison of hydrate dissociation conditions and the Langmuir constant parameters for CF4 based on Parrish and Prausnitz equation are reported. For the kinetics, the effect of initial pressure and temperature on the induction time, CF4 hydrate formation rate, the apparent rate constant of reaction, storage capacity, and water to hydrate conversion during the hydrate formation were studied. Kinetic experiments were performed at initial temperatures of (275.3, 276.1 and 276.6) K and initial pressures of (7.08, 7.92, 9.11, 11.47 and 11.83) MPa. Results show that increasing the initial pressure at constant temperature decreases the induction time, while CF4 hydrate formation rate, the apparent rate constant of reaction, storage capacity, and water to hydrate conversion increase. The same trends are observed with a decrease in the initial temperature at constant pressure.  相似文献   

19.
Clathrate hydrate dissociation conditions were measured for four “alternative” refrigerants, viz. R404A, R406A, R408A and R427A. The experimental measurements were performed within the pressure range of (0.079 to 9.995) MPa and temperatures ranging from (272.7 to 288.7) K. An isochoric pressure-search method was used to perform the measurements. A thermodynamic model based on the van der Waals–Platteeuw (vdW–P) model was applied for the prediction of the dissociation conditions which were compared to the experimental measurements. The fluid phase was modeled using the MHV2 GE-EoS mixing rule along with the UNIFAC (original) activity model. The van der Waals–Platteeuw (vdW–P) model was used for the modeling of the hydrate phase. There was reasonable agreement between the experimental and predicted values.  相似文献   

20.
《Fluid Phase Equilibria》2006,244(2):128-136
This work investigated the high-pressure phase behavior of systems containing glycerol, olive oil and propane in the presence of surfactant AOT. The static synthetic method, using a variable-volume view cell, was employed for obtaining the experimental data in the temperature range from 298 to 373 K, and pressures up to 30 MPa. First, the effect of addition of AOT on the vapor pressure of pure propane was investigated and then the effect of addition of AOT to mixtures of propane + glycerol. Measurements were afterwards accomplished for the system propane + AOT + glycerol + olive oil. For the ternary system liquid–liquid (LLE) and vapor–liquid–liquid (VLLE) equilibrium were observed. Besides VLE, LLE and VLLE, the quaternary system propane + AOT + glycerol + olive oil exhibited at higher concentrations of the glycerol/olive oil ratio a fascinating phase behavior, with the occurrence of three (LLL) and four (VLLL)—phases in equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号