首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 700 毫秒
1.
In metal grains one of the most important failure mechanisms involves shear band localization. As the band width is small, the deformations are affected by material length scales. To study localization in single grains a rate-dependent crystal plasticity formulation for finite strains is presented for metals described by the reformulated Fleck–Hutchinson strain gradient plasticity theory. The theory is implemented numerically within a finite element framework using slip rate increments and displacement increments as state variables. The formulation reduces to the classical crystal plasticity theory in the absence of strain gradients. The model is used to study the effect of an internal material length scale on the localization of plastic flow in shear bands in a single crystal under plane strain tension. It is shown that the mesh sensitivity is removed when using the nonlocal material model considered. Furthermore, it is illustrated how different hardening functions affect the formation of shear bands.  相似文献   

2.
By the nonlinear optimization theory, we predict the yield function of single BCC crystals in Hill's criterion form. Then we give a formula on the macroscopic yield function of a BCC polycrystal Ω under Sachs' model, where the volume average of the yield functions of all BCC crystallites in Ω is taken as the macroscopic yield function of the BCC polycrystal. In constructing the formula, we try to find the relationship among the macroscopic yield function, the orientation distribution function (ODF), and the single BCC crystal's plasticity. An expression for the yield stress of a uniaxial tensile problem is derived under Taylor's model in order to compare the expression with that of the macroscopic yield function.  相似文献   

3.
详细介绍了镍基合金的晶体塑性本构模型,在Asaro大变形晶体塑性框架下,详细介绍了镍基合金的晶体塑性本构模型,在Asaro大变形晶体塑性框架下,引入了运动硬化规律,考虑了温度和应变率对晶体塑性变形的影响,通过针对每个滑移系考虑屈服准则和流动规律建立了晶体塑性模型. 对积分过程进行了推导,通过编写ABAQUS材料用户子程序(UMAT), 实现本构模型的有限元积分算法. 在此基础上模拟了DD3镍基单晶合金在单轴拉伸和循环载荷下的响应,并与实验数据进行了对比. 利用该模型可以很好地模拟镍基单晶所具有的各向异性特性,体现了镍基单晶在循环载荷作用下的拉-压不对称性.   相似文献   

4.
We have been developing the theory of mechanism-based strain gradient plasticity (MSG) to model size-dependent plastic deformation at micron and submicron length scales. The core idea has been to incorporate the concept of geometrically necessary dislocations into the continuum plastic constitutive laws via the Taylor hardening relation. Here we extend this effort to develop a mechanism-based strain gradient theory of crystal plasticity. In this theory, an effective density of geometrically necessary dislocations for a specific slip plane is introduced via a continuum analog of the Peach-Koehler force in dislocation theory and is incorporated into the plastic constitutive laws via the Taylor relation.  相似文献   

5.
A strain gradient-dependent crystal plasticity approach is presented to model the constitutive behaviour of polycrystal FCC metals under large plastic deformation. In order to be capable of predicting scale dependence, the heterogeneous deformation-induced evolution and distribution of geometrically necessary dislocations (GNDs) are incorporated into the phenomenological continuum theory of crystal plasticity. Consequently, the resulting boundary value problem accommodates, in addition to the ordinary stress equilibrium condition, a condition which sets the additional nodal degrees of freedom, the edge and screw GND densities, proportional (in a weak sense) to the gradients of crystalline slip. Next to this direct coupling between microstructural dislocation evolutions and macroscopic gradients of plastic slip, another characteristic of the presented crystal plasticity model is the incorporation of the GND-effect, which leads to an essentially different constitutive behaviour than the statistically stored dislocation (SSD) densities. The GNDs, by their geometrical nature of locally similar signs, are expected to influence the plastic flow through a non-local back-stress measure, counteracting the resolved shear stress on the slip systems in the undeformed situation and providing a kinematic hardening contribution. Furthermore, the interactions between both SSD and GND densities are subject to the formation of slip system obstacle densities and accompanying hardening, accountable for slip resistance. As an example problem and without loss of generality, the model is applied to predict the formation of boundary layers and the accompanying size effect of a constrained strip under simple shear deformation, for symmetric double-slip conditions.  相似文献   

6.
In this paper, numerical simulations of forming limit diagrams (FLDs) are performed based on a rate-sensitive polycrystal plasticity model together with the Marciniak–Kuczynski (M–K) approach. Sheet necking is initiated from an initial imperfection in terms of a narrow band. The deformations inside and outside the band are assumed to be homogeneous, and conditions of compatibility and equilibrium are enforced across the band interfaces. Thus, the polycrystal model need only be applied to two polycrystal aggregates, one inside and one outside the band. Both FCC and BCC crystals are considered with 12 distinct slip systems for an FCC crystal and 24 distinct slip systems for a BCC crystal. The response of an aggregate comprised of many grains is based on an elastic–viscoplastic Taylor-type polycrystal model. With this formulation, the effects of initial imperfection intensity and orientation, crystal elasticity, strain-rate sensitivity, single slip hardening, and latent hardening on the FLD can be assessed. Identical initial textures are considered for both FCC and BCC polycrystals and the predicted FLDs are compared with each other.  相似文献   

7.
Single crystal plasticity based on a representative characteristic length is proposed and introduced into a homogenization approach based on finite element analyses, which are applied to characterization of distinctive yielding behaviors of polycrystalline metals, yield-point elongation, and grain size strengthening. The computational manner for an implicit stress update is derived with the framework of a standard multi-surface plasticity at finite strain, where the evolution of the characteristic lengths are numerically converted from the accumulated slips of all of slip systems by exploiting the mathematical feature of the characteristic length as the intermediate function of the plastic internal variables. Furthermore, a constitutive model for a single crystal reproduces the stress–strain curve divided into three parts. Using two-scale finite element analysis, the macroscopic stress–strain response with yield-point elongation under a situation of low dislocation density is reproduced. Finally, the grain size effect on the yield strength is analyzed with modeling of the grain boundary in the context of the proposed constitutive model and is discussed from both macroscopic and microscopic views.  相似文献   

8.
A polycrystal finite element (FE) model describing the temperature evolution of low carbon steel is proposed in order to forecast the local mechanical fields as a function of temperature, for bainitic microstructure submitted to tri-axial loading. The model is designed for finite strains, large lattice rotations and temperatures ranging into the brittle–ductile transition domain. The dislocation densities are the internal variables. At low temperature in Body Centred Cubic (BCC) materials, plasticity is governed by double kink nucleation of screw dislocations, whereas at high temperature, plasticity depends on interactions between mobile dislocations and the forest dislocations. In this paper, the constitutive law and the evolution of the dislocation densities are written as a function of temperature and describe low and high temperature mechanisms. The studied aggregates are built from Electron Back Scattering Diffraction (EBSD) images of real bainitic steel. The aggregate is submitted to a tri-axial loading in order to describe the material at a crack tip. Mechanical parameters are deduced from mechanical tests. The local strain and stress fields, computed for different applied loadings, present local variations which depend on temperature and on tri-axial ratio. The distribution curves of the maximal principal stresses show that heterogeneities respectively increase with temperature and decrease with tri-axial ratio. A direct application of this model provides the evaluation of the rupture probability within the aggregate, which is treated as the elementary volume in the weak link theory. A comparison with the Beremin criterion calibrated on experimental data, shows that the computed fracture probability dispersion induced by the stress heterogeneities is of the same order than the measured dispersion. Temperature and stress tri-axiality ratio effects are also investigated. It is shown that these two parameters have a strong effect on fracture owing to their influence on the heterogeneous plastic strain. These inhomogeneities can initiate cleavage fracture.  相似文献   

9.
Two new formulations of micropolar single crystal plasticity are presented within a geometrically linear setting. The construction of yield criteria and flow rules for generalized continuum theories with higher-order stresses can be done in one of two ways: (i) a single criterion can be introduced in terms of a combined equivalent stress and inelastic rate or (ii) or individual criteria can be specified for each conjugate stress/inelastic kinematic rate pair, a so-called multi-criterion theory. Both single and multi-criterion theories are developed and discussed within the context of dislocation-based constitutive models. Parallels and distinctions are made between the proposed theories and some of the alternative generalized crystal plasticity models that can be found in the literature. Parametric numerical simulations of a constrained thin film subjected to simple shear are conducted via finite element analysis using a simplified 2-D version of the fully 3-D theory to highlight the influence of specific model components on the resulting deformation under both loading and unloading conditions. The deformation behavior is quantified in terms of the average stress-strain response and the local shear strain and geometrically necessary dislocation density distributions. It is demonstrated that micropolar single crystal plasticity can qualitatively capture the same range of behaviors as slip gradient-based models, while offering a simpler numerical implementation and without introducing plastic slip rates as generalized traction-conjugate velocities subject to an additional microforce balance.  相似文献   

10.
Metal matrix composites (MMCs) generally do not follow the classical plasticity theory, even though the matrix metals do deform plastically. A tension-compression yield asymmetry is typically observed in MMCs. For particulate-reinforced MMCs, this non-classical response is mainly due to the variation of damage evolution with loading modes. In this paper, a viscoplastic multi-axial constitutive model for plastic deformation of MMCs is constructed using the Mises-Schleicher yield criterion. The subsequent plastic flow is characterized by an associated and decomposed flow rule considering effects from both deviatoric and hydrostatic stresses. This model is capable of describing the multi-axial yield and flow behavior of MMCs by using simulated or measured asymmetric tensile and compressive stress-strain responses as input. As an example, the influence of damage evolution in terms of interfacial debonding in MMCs (obtained from FEM simulations) is incorporated through the different tensile and compressive stress-strain behaviors. Applying this model to predict the torsion and the pressure-dependant tensile responses of some commonly used MMCs provides good agreement with experimental data.  相似文献   

11.
Most of hexagonal close-packed (HCP) metals are lightweight metals. With the increasing application of light metal products, the production of light metal is increasingly attracting the attentions of researchers worldwide. To obtain a better understanding of the deformation mechanism of HCP metals (especially for Mg and its alloys), a new constitutive analysis was carried out based on previous research. In this study, combining the theories of strain gradient and continuum mechanics, the equal channel angular pressing process is analyzed and a HCP crystal plasticity constitutive model is developed especially for Mg and its alloys. The influence of elevated temperature on the deformation mechanism of the Mg alloy (slip and twin) is novelly introduced into a crystal plasticity constitutive model. The solution for the new developed constitutive model is established on the basis of the Lagrangian iterations and Newton Raphson simplification.  相似文献   

12.
Most engineering materials possess a polycrystalline structure. Under load the anisotropy of the constituent grains leads to strong inhomogeneities of stresses and strains on the grain level. In order to investigate the local deformation processes, a new crystallographic model for pure fcc metals in the low temperature range has been developed. It is based on the framework of crystal plasticity and uses the finite element method (FEM). The rate dependent constitutive equations consider isotropic as well as kinematic hardening, whereby the mutual interactions of dislocation processes on the different slip systems are taken into account. Comprehensive calculations show that the essential features of both single crystals—which serve as a test object for the constitutive equations—and polycrystals are reproduced correctly. Moreover the simulations allow a deeper understanding of the mechanisms that control the local deformation behaviour of metals, especially of the mutual interactions of slip system activity, local hardening and resulting local strain. Furthermore, the model may serve as a physically motivated base for a later inclusion of damage terms which allow investigations of damage and fatigue on the local scale.  相似文献   

13.
Finite element (FE) simulations of the simple shear test were conducted for 1050-O and 6022-T4 aluminum alloy sheet samples. Simulations were conducted with two different constitutive equations to account for plastic anisotropy: Either a recently proposed anisotropic yield function combined with an isotropic strain hardening law or a crystal plasticity model. The FE computed shear stress–shear strain curves were compared to the experimental curves measured for the two materials in previous works. Both phenomenological and polycrystal approaches led to results consistent with the experiments. These comparisons lead to a discussion concerning the assessment of anisotropic hardening in the simple shear test.  相似文献   

14.
岩石单轴压缩作用下变形局部化的梯度塑性解   总被引:3,自引:0,他引:3  
采用梯度塑性理论研究单轴压缩作用下岩石变形局部化,得到了单轴压缩作用下岩石变形局部化带宽度的一维、二维解析解,为实验测定内部材料长度参数提供了理论依据.  相似文献   

15.
This paper describes the application of a coupled crystal plasticity based microstructural model with an anisotropic yield criterion to compute a 3D yield surface of a textured aluminum sheet (continuous cast AA5754 aluminum sheet). Both the in-plane and out-of-plane deformation characteristics of the sheet material have been generated from the measured initial texture and the uniaxial tensile curve along the rolling direction of the sheet by employing a rate-dependent crystal plasticity model. It is shown that the stress–strain curves and R-value distribution in all orientations of the sheet surface can be modeled accurately by crystal plasticity if a “finite element per grain” unit cell model is used that accounts for non-uniform deformation as well as grain interactions. In particular, the polycrystal calculation using the Bassani and Wu (1991) single crystal hardening law and experimental electron backscatter data as input has been shown to be accurate enough to substitute experimental data by crystal plasticity data for calibration of macroscopic yield functions. The macroscopic anisotropic yield criterion CPB06ex2 (Plunkett et al., 2008) has been calibrated using the results of the polycrystal calculations and the experimental data from mechanical tests. The coupled model is validated by comparing its predictions with the anisotropy in the experimental yield stress ratio and strain ratios at 15% tensile deformation. The biaxial section of the 3D yield surface calculated directly by crystal plasticity model and that predicted by the phenomenological model calibrated with experimental and crystal plasticity data are also compared. The good agreement shows the strength of the approach. Although in this paper, the Plunkett et al. (2008) yield function is used, the proposed methodology is general and can be applied to any yield function. The results presented here represent a robust demonstration of implementing microscale crystal plasticity simulation with measured texture data and hardening laws in macroscale yield criterion simulations in an accurate manner.  相似文献   

16.
Single crystal constitutive equations based on dislocation density (SCCE-D) were developed from Orowan’s strengthening equation and simple geometric relationships of the operating slip systems. The flow resistance on a slip plane was computed using the Burger’s vector, line direction, and density of the dislocations on all other slip planes, with no adjustable parameters. That is, the latent/self-hardening matrix was determined by the crystallography of the slip systems alone. The multiplication of dislocations on each slip system incorporated standard 3-parameter dislocation density evolution equations applied to each slip system independently; this is the only phenomenological aspect of the SCCE-D model. In contrast, the most widely used single crystal constitutive equations for texture analysis (SCCE-T) feature 4 or more adjustable parameters that are usually back-fit from a polycrystal flow curve. In order to compare the accuracy of the two approaches to reproduce single crystal behavior, tensile tests of single crystals oriented for single slip were simulated using crystal plasticity finite element modeling. Best-fit parameters (3 for SCCE-D, 4 for SCCE-T) were determined using either multiple or single slip stress–strain curves for copper and iron from the literature. Both approaches reproduced the data used for fitting accurately. Tensile tests of copper and iron single crystals oriented to favor the remaining combinations of slip systems were then simulated using each model (i.e. multiple slip cases for equations fit to single slip, and vice versa). In spite of fewer fit parameters, the SCCE-D predicted the flow stresses with a standard deviation of 14 MPa, less than one half that for the SCCE-T conventional equations: 31 MPa. Polycrystalline texture simulations were conducted to compare predictions of the two models. The predicted polycrystal flow curves differed considerably, but the differences in texture evolution were insensitive to the type of constitutive equations. The SCCE-D method provides an improved representation of single-crystal plastic response with fewer adjustable parameters, better accuracy, and better predictivity than the constitutive equations most widely used for texture analysis (SCCE-T).  相似文献   

17.
A strain gradient dependent crystal plasticity approach is used to model the constitutive behaviour of polycrystal FCC metals under large plastic deformation. Material points are considered as aggregates of grains, subdivided into several fictitious grain fractions: a single crystal volume element stands for the grain interior whereas grain boundaries are represented by bi-crystal volume elements, each having the crystallographic lattice orientations of its adjacent crystals. A relaxed Taylor-like interaction law is used for the transition from the local to the global scale. It is relaxed with respect to the bi-crystals, providing compatibility and stress equilibrium at their internal interface. During loading, the bi-crystal boundaries deform dissimilar to the associated grain interior. Arising from this heterogeneity, a geometrically necessary dislocation (GND) density can be computed, which is required to restore compatibility of the crystallographic lattice. This effect provides a physically based method to account for the additional hardening as introduced by the GNDs, the magnitude of which is related to the grain size. Hence, a scale-dependent response is obtained, for which the numerical simulations predict a mechanical behaviour corresponding to the Hall-Petch effect. Compared to a full-scale finite element model reported in the literature, the present polycrystalline crystal plasticity model is of equal quality yet much more efficient from a computational point of view for simulating uniaxial tension experiments with various grain sizes.  相似文献   

18.
In this paper, a simple mechanical model of polycrystal is suggested on the basis of the crystal plasticity. This model incorporates interactions among grains in polycrystal and interactions among slip systems in a crystal grain component. Especially, an equation for a slip strain of slip system is based on a theory of thermo-activation motion of dislocation. In this way, the model can take into account rate (creep) properties and temperature effects as well as an induced plastic anisotropy depending on deformation path, under multi-axial condition.Some computations are done by using the model for typical sets of strain paths and compared with corresponding experimental results of aluminum alloy at 200°C. The computational results reproduce accurately typical features observed in the experiments.  相似文献   

19.
金属材料的塑性流动行为依赖于温度和应变率,温度和应变率敏感性是金属材料塑性流动的最重要的本质特性之一,建立合适的热黏塑性本构关系来准确描述金属塑性流动行为的温度和应变率依赖性,是金属材料能被广泛应用的必要前提。为此,对金属热黏塑性本构关系的最新研究进展进行了综述,介绍了常见的几种金属热黏塑性本构关系并进行了详细讨论,给出了各本构关系的优势与不足,最后系统介绍了包含金属塑性流动行为中出现的第三型应变时效、或K-W锁位错结构引起的流动应力随温度变化出现的反常应力峰以及拉压不对称等行为的金属热黏塑性本构关系的研究进展。  相似文献   

20.
本文采用多晶塑性分析方法,设材料点包含一定数量的各向异性单晶晶粒并考虑晶粒尺寸的影响,计算材料点的应力和应变时利用了Taylor假设。模型引入考虑尺寸效应的晶体滑移硬化函数,同时针对晶体滑移引入背应力及其方向性硬化的描述,以反映不同晶粒尺寸材料在循环加载条件下的力学行为。利用该模型,本文第一作者采用显式格式编制了与ABAQUS商用有限元软件接口的用户材料子程序(VUMAT),实例计算证实该模型可以反映和描述多晶金属材料在材料反复加载条件下的循环塑性行为与尺寸效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号