首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 402 毫秒
1.
针对非均质饱和多孔介质弹塑性动力问题分析提出了一种广义耦合扩展多尺度有限元方法。首先,提出了基于细尺度等效刚度阵的粗尺度单元数值基函数构造方法,并给出了构造数值基函数的一般公式,所构造的耦合数值基函数有效考虑了动力相关效应与固液之间的耦合效应。其次,针对弹塑性非线性问题迭代求解,给出了基于摄动方法的位移与孔隙压强降尺度计算修正方案。最后,针对材料的强非均质特征,利用多节点粗单元技术来提高多尺度有限元方法的计算精度。通过与基于精细网格的传统有限元分析结果对比,验证了本文所提出方法的有效性与高效性。  相似文献   

2.
Hierarchical defects are defined as adjacent defects at different length scales.Involved are the two scales where the stress field distribution is interrelated. Based on the complex variable method and conformal mapping, a multiscale framework for solving the problems of hierarchical defects is formulated. The separated representations of mapping function, the governing equations of potentials, and the stress field are subsequently obtained. The proposed multiscale framework can be used to solve...  相似文献   

3.
A new 2D parallel multispecies polyatomic particle–based hybrid flow solver is developed by coupling the Direct Simulation Monte Carlo (DSMC) method with a novel Dynamic Collision Limiter (DCL) approach to solve multiscale transitional flows. The hybrid DSMC‐DCL solver can solve nonequilibrium multiscale flows with length scales ranging from continuum to rarefied. The DCL method, developed in this work, dynamically assigns different number of collisions in cells, which is based on the local value of K‐S parameter such that the number of collisions per time step is limited in near‐equilibrium flow regions. Present hybrid solver uses the Kolmogorov‐Smirnov statistical test as the continuum breakdown parameter, based on which, the solution domain is decomposed into near‐equilibrium and nonequilibrium flow regions. Direct Simulation Monte Carlo is used where nonequilibrium flow regions are encountered, while the DCL method is used where flow regions are found to be in near‐equilibrium state. In this work, we have studied hypersonic flow of nitrogen over a blunt body with an aerospike and supersonic flow of argon through a micronozzle. The results obtained by the hybrid DSMC‐DCL solver are compared and shown to agree well with the experimental data and with those obtained from DSMC, with significant savings in the computational cost.  相似文献   

4.
固体的统计细观力学——-连接多个耦合的时空尺度   总被引:10,自引:2,他引:10  
从固体力学所面临的新的挑战------多物理、多尺度耦合及其现状的描述开始, 以层裂 过程为例, 说明了这些多尺度非平衡问题的基本困难在于, 在固体中不同尺度上有不同的微 结构层次及不同的演化物理和速率. 接下来, 概述了一些针对这一困难的独特的思路及 其成果. 第3部分强调了一些统计平均方法的范式, 以及处理包含多个时间和空间尺度的问 题的新思路, 特别是非平衡损伤演化导致宏观失效的问题. 在第4部分, 简要评述了一些连 接多个空间和时间尺度的细观力学框架, 如位错理论, 物理细观力学, Weibull理论, 随机 理论等, 并且阐述了其中蕴含的跨尺度耦合的机理. 然后, 在第5部分, 回到了描述损 伤演化过程的框架, 也就是统计细观损伤力学以及它的跨尺度封闭近似. 基于这些跨尺度框 架, 在第6部分, 对控制跨尺度耦合的可能机理进行了评述和比较. 由于对失效时灾变 的洞察与跨尺度强耦合紧密相关, 一些非平衡和强相互作用的新概念在第7部分进行了讨 论. 最后, 以一个简短的总结和一些建议结束.  相似文献   

5.
Multiscale aspects of heat and mass transfer during drying   总被引:1,自引:0,他引:1  
The macroscopic formulation of coupled heat and mass transfer has been widely used during the past two decades to model and simulate the drying of one single piece of product, including the case of internal vaporization. However, more often than expected, the macroscopic approach fails and several scales have to be considered at the same time. This paper is devoted to multiscale approaches to transfer in porous media, with particular attention to drying. The change of scale, namely homogenization, is presented first and used as a generic approach able to supply parameter values to the macroscopic formulation. The need for a real multiscale approach is then exemplified by some experimental observations. Such an approach is required as soon as thermodynamic equilibrium is not ensured at the microscopic scale. A stepwise presentation is proposed to formulate such situations.  相似文献   

6.
To better simulate multi-phase interactions involving failure evolution, the material point method (MPM) has evolved for almost twenty years. Recently, a particle-based multiscale simulation procedure is being developed, within the framework of the MPM, to describe the detonation process of energetic nano-composites from molecular to continuum level so that a multiscale equation of state could be formulated. In this letter, a multiscale MPM is proposed via both hierarchical and concurrent schemes to simulate the impact response between two microrods with different nanostructures. Preliminary results are presented to illustrate that a transition region is not required between different spatial scales with the proposed approach.  相似文献   

7.
We develop a general multiscale method for coupling atomistic and continuum simulations using the framework of the heterogeneous multiscale method (HMM). Both the atomistic and the continuum models are formulated in the form of conservation laws of mass, momentum and energy. A macroscale solver, here the finite volume scheme, is used everywhere on a macrogrid; whenever necessary the macroscale fluxes are computed using the microscale model, which is in turn constrained by the local macrostate of the system, e.g. the deformation gradient tensor, the mean velocity and the local temperature. We discuss how these constraints can be imposed in the form of boundary conditions. When isolated defects are present, we develop an additional strategy for defect tracking. This method naturally decouples the atomistic time scales from the continuum time scale. Applications to shock propagation, thermal expansion, phase boundary and twin boundary dynamics are presented.  相似文献   

8.
将变分多尺度方法应用于一维缆索模型,导出受力缆索的宏观有限元模型并求得细观位移解析解,总结出变分多尺度方法应用于具体模型的关键点和缺陷. 假定刚度为常值,数值模拟一定边界和受力下的缆索,得到宏观和细观位移. 将细观与宏观位移叠加,相比于精确位移得出:细观位移可视为常规有限元模型的后验误差. 变分多尺度方法在一维力学模型中的成功应用,推进了其实用性,为其在更多力学及工程问题中的运用和发展提供了参考.  相似文献   

9.
We propose a multiscale computational model to couple molecular dynamics and peridynamics. The multiscale coupling model is based on a previously developed multiscale micromorphic molecular dynamics (MMMD) theory, which has three dynamics equations at three different scales, namely, microscale, mesoscale, and macroscale. In the proposed multiscale coupling approach, we divide the simulation domain into atomistic region and macroscale region. Molecular dynamics is used to simulate atom motions in atomistic region, and peridynamics is used to simulate macroscale material point motions in macroscale region, and both methods are nonlocal particle methods. A transition zone is introduced as a messenger to pass the information between the two regions or scales. We employ the “supercell” developed in the MMMD theory as the transition element, which is named as the adaptive multiscale element due to its ability of passing information from different scales, because the adaptive multiscale element can realize both top-down and bottom-up communications. We introduce the Cauchy–Born rule based stress evaluation into state-based peridynamics formulation to formulate atomistic-enriched constitutive relations. To mitigate the issue of wave reflection on the interface, a filter is constructed by switching on and off the MMMD dynamic equations at different scales. Benchmark tests of one-dimensional (1-D) and two-dimensional (2-D) wave propagations from atomistic region to macro region are presented. The mechanical wave can transit through the interface smoothly without spurious wave deflections, and the filtering process is proven to be efficient.  相似文献   

10.
We present a new fast iterative solution technique for the large sparse-matrix system that is commonly encountered in the mixed finite-element formulation of transient viscoelastic flow simulation: the DEVSS (discrete elastic-viscous stress splitting) method. A block-structured preconditioner for the velocity, pressure and viscous polymer stress has been proposed, based on a block reduction of the discrete system, designed to maintain spectral equivalence with the discrete system. The algebraic multigrid method and the diagonally scaled conjugate gradient method are applied to the preconditioning sub-block systems and a Krylov subspace iterative method (MINRES) is employed as an outer solver. We report the performance of the present solver through example problems in 2D and 3D, in comparison with the corresponding Stokes problems, and demonstrate that the outer iteration, as well as each block preconditioning sub-problem, can be solved within a fixed number of iterations. The required CPU time for the entire problem scales linearly with the number of degrees of freedom, indicating O(N) performance of this solution algorithm.  相似文献   

11.
In implicit upwind methods for the solution of linearized Euler equations, one of the key issues is to balance large time steps, leading to a fast convergence behavior, and small time steps, needed to sufficiently resolve relevant flow features. A time step is determined by choosing a Courant–Friedrichs–Levy (CFL) number in every iteration. A novel CFL evolution strategy is introduced and compared with two existing strategies. Numerical experiments using the adaptive multiscale finite volume solver QUADFLOW demonstrate that all three CFL evolution strategies have their advantages and disadvantages. A fourth strategy aiming at reducing the residual as much as possible in every time step is also examined. Using automatic differentiation, a sensitivity analysis investigating the influence of the CFL number on the residual is carried out confirming that, today, CFL control is still a difficult and open problem. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
非均质材料动力分析的广义多尺度有限元法   总被引:1,自引:0,他引:1  
自然界和工程中的大部分材料都具有多尺度特征,当考察尺度小到一定程度后,都将表现出非均质性.针对非均质材料的动力问题,提出了一种广义多尺度有限元方法,其基本思想是利用静态凝聚法以及罚函数法构造能够反映单元内部材料非均质特性的多尺度位移基函数.与传统扩展多尺度有限元法中的基函数构造方式不同,广义多尺度有限元法的基函数无需通过在子网格域上多次求解椭圆问题得到,而可直接通过矩阵运算获得.其主要步骤如下:利用数值基函数将一个非均质单胞等效为一个宏观单元,进而形成整个结构的等效刚度矩阵,并得到宏观网格的节点位移,最后再次利用数值基函数得到微观尺度上的位移结果.该广义多尺度有限元法是扩展多尺度有限元法的一种新的拓展,可模拟具有更加复杂几何的非均质单胞的力学行为.通过数值算例,模拟了非均质材料的静力问题、广义特征值问题以及瞬态响应问题,计算结果表明:在边界条件一样的情况下,广义多尺度有限元法的计算结果与传统有限元的计算结果保持高度一致.与传统有限元相比,该方法在保证计算精度的同时极大地提高了计算效率.研究结果表明,广义多尺度有限元法能够很好地模拟非均质单胞的力学行为,具有良好的工程应用潜力.   相似文献   

13.
A thermodynamically consistent strategy of coarse-graining microscopic models for complex fluids is illustrated for low-molecular polymeric melts subjected to homogeneous flow fields. The systematic coarse-graining method is able to efficiently bridge the time- and length scale gap between microscopic and macroscopic dynamics. A projection operator derivation is employed within the framework of nonequilibrium thermodynamics. From an alternating Monte-Carlo-molecular dynamics iteration scheme we obtain the thermodynamic building blocks of the macroscopic model. We investigate a number of imposed shear and elongational flows of interest and find that the coarse-grained model predicts structural as well as material functions beyond the regime of linear response. The elimination of fast degrees of freedom gives rise to dissipation, which we analyse in terms of the Rouse model. The results are in quantitative agreement with those obtained via standard nonequilibrium molecular dynamics (NEMD) simulations for planar shear and elongation. The coarse-graining method is able to deal with more general flows, which are not accessible by standard NEMD simulations.  相似文献   

14.
The aim of this work is to provide an improved information exchange in hierarchical atomistic-to-continuum settings by applying stochastic approximation methods. For this purpose a typical model belonging to this class is chosen and enhanced. On the macroscale of this particular two-scale model, the balance equations of continuum mechanics are solved using a nonlinear finite element formulation. The microscale, on which a canonical ensemble of statistical mechanics is simulated using molecular dynamics, replaces a classic material formulation. The constitutive behavior is computed on the microscale by computing time averages. However, these time averages are thermal noise-corrupted as the microscale may practically not be tracked for a sufficiently long period of time due to limited computational resources. This noise prevents the model from a classical convergence behavior and creates a setting that shows remarkable resemblance to iteration schemes known from stochastic approximation. This resemblance justifies the use of two averaging strategies known to improve the convergence behavior in stochastic approximation schemes under certain, fairly general, conditions. To demonstrate the effectiveness of the proposed strategies, three numerical examples are studied.  相似文献   

15.
The quasicontinuum (QC) method is a spatial multiscale method that extends the length scales accessible to fully atomistic simulations (like molecular dynamics (MD)) by several orders of magnitude. While the recent development of the so-called “hot-QC method” enables dynamic simulations at finite temperature, the times accessible to these simulations remain limited to the sub-microsecond time scale due to the small time step required for stability of the numerical integration. To address this limitation, we develop a novel finite-temperature QC method that can treat much longer time scales by coupling the hot-QC method with hyperdynamics—a method for accelerating time in MD simulations. We refer to the new approach as “hyper-QC”. As in the original hyperdynamics method, hyper-QC is targeted at dynamical systems that exhibit a separation of time scales between short atomic vibration periods and long waiting times in metastable states. Acceleration is achieved by modifying the hot-QC potential energy to reduce the energy barriers between metastable states in a manner that ensures that the characteristic dynamics of the system are preserved. First, the high accuracy of hot-QC in reproducing rare event kinetics is demonstrated. Then, the hyper-QC methodology is validated by comparing hyper-QC results with those of hot-QC and full MD for a one-dimensional chain of atoms interacting via a Lennard–Jones potential.  相似文献   

16.
In this work we present a thermomechanical multiscale constitutive model for materials with microstructure. In these materials thermal effects at microscale have an impact on the effective macroscopic stress. As a result, it turns out that the homogenized stress depends upon the macroscopic temperature and its gradient. In order to allow this interplay to be thermodynamically valid, we resort to a macroscopic extended thermodynamics whose elements are derived from the microscopic behavior using homogenization concepts. Hence, the thermodynamics implications of this new class of multiscale models are discussed. A variational approach based on the Hill–Mandel Principle of Macro-homogeneity, and which makes use of the volume averaging concept over a local representative volume element (RVE), is employed to derive the thermal and mechanical equilibrium problems at the RVE level and the corresponding homogenization expressions for the effective heat flux and stress. The material behavior at the RVE level is described through standard phenomenological constitutive models. To sum up, the novel contribution of the model presented here is that it allows to include the microscopic temperature fluctuation field, obtained from the multiscale thermal analysis, in the micro-mechanical problem at the RVE level while keeping thermodynamic consistency.  相似文献   

17.
A novel Navier-Stokes solver based on the boundary integral equation method is presented. The solver can be used to obtain flow solutions in arbitrary 2D geometries with modest computational effort. The vorticity transport equation is modelled as a modified Helmholtz equation with the wave number dependent on the flow Reynolds number. The non-linear inertial terms partly manifest themselves as volume vorticity sources which are computed iteratively by tracking flow trajectories. The integral equation representations of the Helmholtz equation for vorticity and Poisson equation for streamfunction are solved directly for the unknown vorticity boundary conditions. Rapid computation of the flow and vorticity field in the volume at each iteration level is achieved by precomputing the influence coefficient matrices. The pressure field can be extracted from the converged streamfunction and vorticity fields. The solver is validated by considering flow in a converging channel (Hamel flow). The solver is then applied to flow in the annulus of eccentric cylinders. Results are presented for various Reynolds numbers and compared with the literature.  相似文献   

18.
Forced laminar diffusion flames form an important class of problems that can help to bridge the significant gap between steady laminar flames in simple burner configurations and the turbulent flames found in many practical combustors. Such flames offer a much wider range of interactions between convection, diffusion, and chemical reaction than can be examined under steady-state conditions, and yet detailed simulations of them should be feasible without having to resort to “modeling” any of the relevant physics, above all without having prematurely to reduce the large kinetic mechanisms typical of hydrocarbon fuels. Nevertheless, the computation of time-dependent laminar diffusion flames with conventional numerical methods is hindered by technical challenges that, while not new, are more troublesome to surmount than in the calculation of otherwise similar, unforced flames. First, the intricate spatiotemporal coupling between fluid dynamics and combustion thermochemistry ensures that spurious numerical diffusion or spatial under-resolution of the mixing process at any stage of the computation can lead to inaccurate prediction of flame characteristics for the remainder thereof. Second, relatively long simulated flow times and extremely short chemical time scales make many standard time integration algorithms impractical on all but the largest parallel computer clusters. This paper introduces a new numerical approach for time-varying laminar flames that addresses these challenges through the use of high order compact finite difference schemes within a robust, fully implicit solver based on a Jacobian-free Newton–Krylov method. The capabilities of this implicit-compact solver are demonstrated on a periodically forced axisymmetric laminar jet diffusion flame with one-step Arrhenius chemistry, and the results are compared to those of a conventional low order finite difference solver.  相似文献   

19.
Microcontinuum field theories, including Micromorphic theory, Microstructure theory, Micropolar theory, Cosserat theory, nonlocal theory and couple stress theory, are the extensions of the classical field theories for the applications in microscopic space and time scales. They have been expected to overlap atomic model at microscale and encompass classical continuum mechanics at macroscale. This work provides an atomic viewpoint to examine the physical foundations of those well-established microcontinuum theories, and to justify their applicability through lattice dynamics and molecular dynamics.  相似文献   

20.
浸入边界法通过在N-S方程中施加体积力模拟不可滑移固壁边界及动边界,避免生成复杂贴体网格及动网格,极大地节省了网格建模时间及动网格计算消耗。本文提出一种新型附加体积力简化计算方法,将简化附加体积力以源项形式嵌入动量方程迭代中,通过用户自定义函数对CFD软件FLUENT二次开发,实现了浸入边界法和通用流体力学求解器的耦合计算。通过静止圆柱和动圆柱绕流数值模拟进行了验证,并探讨了插值函数对计算精度的影响。研究表明,通过引入浸入边界模型,能够提高计算效率,并实现结构网格背景下复杂边界和动边界的高效建模。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号