首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The monoclinic scheelite BiVO4 crystals with peanut-like, oval, twin-quadrangle and twin-four-pointed star morphologies were synthesized via a facile one step hydrothermal method by using sodium citrate as the chelating agent. The X-ray diffraction and scanning electron microscopy were employed to elucidate the structures and mophologies of the as-prepared BiVO4 samples. The results showed that the formation of m-BiVO4 with different morphologies relied on the pH value of the precursor solution. The band gaps values (Eg) of all the BiVO4 samples were around 2.37–2.45 eV according to the UV–vis diffuse reflectance spectrum, which indicated that samples could strongly absorb in the visible light region. The photocatalytic activities of BiVO4 crystals were evaluated by degradation of MB in aqueous solution under artificial solar-light. The BiVO4 samples obtained at different pH values showed different photocatalytic activities during the sunlight-driven photodegradation of methylene blue (MB). The sample with peanut-like-shape prepared at pH=1 exhibited the highest activity, and the photocatalytic conversion could reach above 90% after 3 h of irradiation. The result suggested that m-BiVO4 with peanut-like-shape could be used as an effective photocatalyst in practical application for organic pollutants degradation.  相似文献   

2.
The Ag+/BiVO4 photocatalyst was fabricated through a facile hydrothermal method by using K6V10O28·9H2O as the vanadium source. The impact of Ag+ on the product's structure and morphology was studied. It was shown that the amount of Ag+ has no effect on the product’s crystal phases but plays an important role on the morphology of the nanoparticles that construct the shell of BiVO4 microspheres. In addition, the Ag+-doped photocatalysts have much higher photocatalytic activities in removing RhB and MB under the UV light illumination than the pure BiVO4. A possible photocatalytic mechanism was proposed in photoexcitation of the BiVO4 electrons which subsequently captured by the dopant. The present work may offer a novel route to reach higher photocatalytic activity by doping the Ag+ in the semiconductor catalysts.  相似文献   

3.
The alkaline phosphate based LiNa3P2O7:Tb3+ phosphors are prepared by solid state reaction method. X-ray diffraction (XRD) analysis shows that all the powders possess orthorhombic structure. Fourier transform infrared (FTIR) spectroscopy studies suggest that the phosphor belong to the diphosphate family. The morphology of the phosphors is identified by scanning electron microscopy (SEM). Upon 378 nm excitation, the LiNa3P2O7:Tb3+ phosphors shown emission bands at 482, 545, 588 and 620 nm corresponding to the transitions 5D47F6, 5D47F5, 5D47F4 and 5D47F3, respectively. The optimized concentration of Tb3+ in LiNa3P2O7 phosphor is found to be 9 mol%. The concentration quenching mechanism was proved to be the exchange interaction between two nearest Tb3+ ions with the critical distance (Rc) of 1.18 nm. The Commission International de l'Eclairage (CIE) coordinates evidence that the phosphors emit in the green light region. Thermoluminescence properties of the prepared phosphors are studied by pre-irradiating the powders with different doses of UV irradiation. The kinetic parameters of TL glow curves are calculated using Chen's peak shape method.  相似文献   

4.
Crystallization process of Gd2Ti2O7 precursor's powder prepared by Pechini-type polymerized complex route has been studied under isothermal experimental conditions in an air atmosphere. It was found that the crystallization proceeds through two-parameter Šesták–Berggren (SB) autocatalytic model, in the operating temperature range of 550 °C≤T≤750 °C. Based on the behavior of SB parameters (M, N), it was found that in the lower operating temperature range, the crystallites with relatively low compactness exist, which probably disclosed low dimensionality of crystal growth from numerous nucleation sites, where the amorphous solid is produced. In the higher operating temperature region (above 750 °C), it was established that a morphological well-defined and high-dimensional particles of the formed pyrochlore phase can be expected. It was found that at T=850 °C, there is a change in the rate-determining reaction step, from autocatalytic into the contracting volume mechanism.  相似文献   

5.
Novel g-C3N4 modified Bi2O3 (g-C3N4/Bi2O3) composites were synthesized by a mixing-calcination method. The samples were characterized by thermogravimetry (TG), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), UV–vis diffuse reflection spectroscopy (DRS), photoluminescence (PL) and photocurrent-time measurement (PT). The photocatalytic activity of the composites was evaluated by degradation of Rhodamine B (RHB) and 4-chlorophenol (4-CP) under visible light irradiation (>400 nm). The results indicated that the g-C3N4/Bi2O3 composites showed higher photocatalytic activity than that of Bi2O3 and g-C3N4. The enhanced photocatalytic activity of the g-C3N4/Bi2O3 composites could be attributed to the suitable band positions between g-C3N4 and Bi2O3. This leads to a low recombination between the photogenerated electron–hole pairs. The proposed mechanism for the enhanced visible-light photocatalytic activity of g-C3N4/Bi2O3 composites was proven by PL and PT analysis.  相似文献   

6.
Novel Bi2MoO6/BiPO4 composites with heterojunction structure were fabricated by a one-step hydrothermal method. The photocatalytic properties of Bi2MoO6/BiPO4 composites were evaluated by photocatalytic degradation of rhodamine B (Rh B) under visible light irradiation (λ>420 nm). The results showed that Bi2MoO6/BiPO4 photocatalysts showed much higher photocatalytic activity for the Rh B degradation than the pure BiPO4 and Bi2MoO6 under visible light. The best photocatalytic performance of Bi2MoO6/BiPO4 with about 98.0% Rh B degradation located at molar ratio of 2:1 under visible light illumination for 30 min. The enhanced photocatalytic activity could be mainly ascribed to the formation of heterojunction interface in Bi2MoO6/BiPO4 composites, which is beneficial to the transfer and separation of photogenerated electron–hole pairs, as well as the strong visible light absorption resulting from the sensitization role of Bi2MoO6 to BiPO4. It was also observed that the photodegradation of Rh B is chiefly attributed to the oxidation action of the generated O2 radicals and the action of hvb+ through direct hole oxidation process.  相似文献   

7.
In this study, we prepared trimanganese tetroxide nanoparticles from MnCl2 solution in an ammonia atmosphere using a new surfactant-free method at room temperature. We analyzed and characterized the effects of different processing conditions, such as the concentrations of manganese and the ammonia source, as well as the reaction time, on the structure, purity, and morphology of the products using powder X-ray diffraction (XRD), scanning electron microscopy, and Fourier transformation infrared spectroscopy (FTIR) techniques. The XRD and FTIR analyses confirmed that the prepared products comprised single phase Mn3O4. At room temperature, the paramagnetic characteristics were also verified by vibrating sample magnetometry. Furthermore, we tested the catalytic activity of the nanoparticles during the degradation of methyl orange and Congo red, which are organic pollutants. Our experiments demonstrated the rapid color removal and reduction in the chemical oxygen demand (>70% and >50% within 10 min, respectively) using aqueous solutions of azo dyes.  相似文献   

8.
In this paper, we report the hydrothermal preparation of Cd(OH)2 nanowires and further conversion to CdO nanobelts, CdS nanowires and CdSe nanoparticles through thermal treatment, solvothermal and mixed-solvothermal routes, respectively. The as-obtained products were characterized by means of powder X-ray diffraction (XRD), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FEMSEM). Research showed that four cadmium compounds were good photocatalysts for the degradation of organic dyes such as Safranine T and Pyronine B, under irradiation of 365 nm UV light. The order of catalytic activity of different materials was found to be Cd(OH)2<CdO<CdS<CdSe.  相似文献   

9.
We report a facile synthesis of ZnO/Fe2O3 heterostructures based on the hydrolysis of FeCl3 in the presence of ZnO nanoparticles. The material structure, composition, and its optical properties have been examined by means of transmission electron microscopy, scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and diffuse reflectance UV–visible spectroscopy. Results obtained show that 2.9 nm-sized Fe2O3 nanoparticles produced assemble with ZnO to form ZnO/Fe2O3 heterostructures. We have evaluated the photodegradation performances of ZnO/Fe2O3 materials using salicylic acid under UV-light. ZnO/Fe2O3 heterostructures exhibited enhanced photocatalytic capabilities than commercial ZnO due to the effective electron/hole separation at the interfaces of ZnO/Fe2O3 allowing the enhanced hydroxyl and superoxide radicals production from the heterostructure.  相似文献   

10.
TiO2 hollow nanospheres were prepared using silicon oxide as a template. N-doped titanium oxide hollow spheres, TiO2−xNx were synthesized by reacting TiO2 hollow spheres with thiourea at 500 °C. XRD and XPS data showed that oxygen was successfully substituted by nitrogen through the nitrogen-doping reaction, and finally N-doped TiO2 hollow spheres were formed. The N-doped TiO2 hollow spheres showed new absorption shoulder in visible light region so that they were expected to exhibit photocatalytic activity in the visible light. The photocatalytic activity of N-doped TiO2 hollow spheres under visible light was similar to that of normal spherical TiO2−xNx in spite of the structural difference.  相似文献   

11.
Colloidal ZnO nanoparticles were prepared in ethanol solutions and annealed at different temperatures (150-500 °C) subsequently. The size, morphology and surface characteristics of ZnO nanoparticles were examined by TEM, XRD, UV-vis absorption spectrum and FTIR technique. With the increase of annealing temperature, the mean size of ZnO nanoparticles was increased from 10 to 90 nm, while the bonding structure of acetate groups coordinating with zinc ions evolved from unidentate to bidentate type. The UV-induced degradation results of methyl orange verified that the photocatalytic process of colloidal ZnO nanoparticles without annealing and the sample annealed at 150 °C was unstable for the weakly bonding unidentate type of acetate groups. However, the sample annealed above 150 °C demonstrated their photocatalytic stability in the whole catalytic process for the stable bidentate bonding type of acetate groups. In addition, the change of particle size in the annealing process significantly affected the catalytic activity of photocatalysts. ZnO nanoparticles annealed at 300 °C would be a prospective photocatalysts with a high catalytic activity and stability compared with the other samples.  相似文献   

12.
The catalytic activity of Ag–ZnO heterostructure on the photocatalytic degradation of rhodamine B was investigated. It demonstrated that Ag–ZnO heterostructure exhibited an enhanced photocatalytic activity compared to pure ZnO nanoparticles under direct sunlight. The possible factors to the photocatalytic acitivity of the sample were explored, including Ag content, dispersity and calcination temperature. It was shown that the sample dispersed by PVP, with 5% mol ratio Ag content, calcined at 400 °C showed the highest photocatalytic acitivity and this catalyst was reusable.  相似文献   

13.
We prepared NaNbO3 by several methods, namely solid-state reaction (SSR), hydrothermal (HT) and polymerized complex (PC) methods, and investigated the relationships between the photocatalytic activity and the particle size and morphology. The photocatalytic activity was evaluated by H2 evolution from an aqueous methanol solution and pure water splitting in the presence of the Pt(0.5 wt%)/NaNbO3 and RuO2(1.25 wt%)/NaNbO3, respectively. It is found that the sample prepared by PC with smallest particles exhibits the highest photocatalytic activity in both reactions. Moreover, the HT sample with the cubic and rectangular shape also shows the enhanced photocatalytic activity for H2 evolution from an aqueous methanol solution in comparison with that of the sample prepared by SSR.  相似文献   

14.
Polydispersed ZnO nanoparticles (ZnO1000 and ZnO600) with two different windows of particle size distributions (∼120 and 30 nm) were synthesized using citrate gel route and different annealing treatments (1000 and 600 °C, respectively). Photocatalytic efficiency of these samples was compared with TiO2 in its commercial form-P25, on two dyes, Methylene blue (MB) and Methyl orange (MO). The X-ray diffraction data showed wrutzite ZnO and anatase and rutile phases of P25. UV-visible absorbance spectra of ZnO1000 showed broad absorption range from UV-to-visible (from 382 to 700 nm), as against sharp absorption peaks in UV range for both ZnO600 and P25. The microstructural morphology as seen through scanning electron micrographs showed ZnO1000 with tetrapod-like structures while the ZnO600 showed almost spherical morphologies. Upon subjecting these catalysts to dye solutions in sunlight it was found that both the dyes were completely decolorised within 20 min by ZnO1000, as against partial decolorisation by ZnO600 and P25 ( 53% and 78% for MO and 77% and 88% for MB samples). The effect of catalyst loading (from 125 mg to 1 g) on decolorisation showed that ZnO1000 had good efficiency for all concentrations which was followed by P25 and then by ZnO600. Small perturbations are attributed to the competition between sunlight scattering-induced, reduced irradiation field and the exposed surface area offered by catalyst, which work as active sites for decolorisation. The reusability of the catalysts when studied on fresh dye samples (4 trials), the decolorisation efficiency decreased merely from 99.2% to 99.12% for ZnO1000 as compared to ZnO600 (53.3% to 19.94%) and P25 (78.3% to 31.42%), indicating the efficient reusability of ZnO1000. The effective half life of the catalysts, in terms of number of reuses, were calculated and found to be ∼3 for both ZnO600 and P25 and was >3000 for ZnO1000, which justifies its extremely high reuse. The byproduct analysis (compared with standards prescribed by World Health Organisation (WHO) and Central Pollution Control Board of India (CPCB)) showed cleavage of the chromophore and of other bonds with opening of benzene rings, indicating degradation of the dyes in concurrence with decolorisation, in the stipulated time. Further, cytotoxicity studies performed on SiHa cell lines showed non-toxicity of the byproducts with ZnO1000 as compared to ZnO600 and P25.  相似文献   

15.
Ultrafine nitrogen-doped TiO2 nanoparticles with narrow particle size distribution, good dispersion, and high surface area were synthesized in the presence of urea and PEG-4000 via a hydrothermal procedure. TEM observation, N2 adsorption, XRD, UV-vis spectroscopy, the Raman spectroscopy and XPS analysis were conducted to characterize the synthesized TiO2 particles. The synthesized TiO2 particles were a mixture of 49.5% anatase and 50.5% rutile with a size of around 5 nm. The photocatalytic activities were tested in the degradation of an aqueous solution of a reactive Brilliant Blue KN-R under both UV and visible light. The synthesized TiO2 particles showed much higher photocatalytic activity than a commercial P25 TiO2 powder under both UV and visible light irradiations. The high performance is associated to N doping, the reduced particle size, good dispersion, high surface area, and a quantum size effect.  相似文献   

16.
Polycrystalline samples of composition Cu1−xNixInTe2 (for x=0–0.05) were synthesized from elements of 5 N purity using a solid-state reaction. The phase purity of the products was verified by X-ray diffraction. Samples for measurement of the transport properties were prepared using hot-pressing. The samples were then characterized by the measurement of electrical conductivity, the Hall coefficient, the Seebeck coefficient, and the thermal conductivity over a temperature range of 300–675 K. All of the samples demonstrate p-type conductivity. We discuss the influence of Ni substitution on the free carrier concentration and the thermoelectric performance. The investigation of the thermoelectric properties shows an improvement up to 50% of ZT in the temperature range of 300–600 K.  相似文献   

17.
Nickel phosphide nanocrystals with various phases have been successfully synthesized via a simple solvothermal route at 180 °C for 16 h, employing nickel chloride and white phosphorus (WP) as starting reactants in the presence of sodium dodecylbenzene sulfonate (SDBS). X-ray powder diffraction (XRD) research showed that the pure Ni12P5 phase with a high yield could be obtained in an ethanol solution, and the pure Ni2P form was prepared in a mixed system with the volume ratio of water/ethanol of 10:10. Namely, the presence of water molecules induced the phase conversion of nickel phosphides. Furthermore, in order to investigate the correlation between properties and phases, as a case, the photocatalytic degradation abilities of two nickel phosphide phases for organic dyes were compared.  相似文献   

18.
CuInS2, CuInSe2 and CuInTe2 nanocubes of chalcopyrite structure have been successfully synthesized by hydrothermal process using deionized water as solvent at 180 °C for 20 h. The crystallinity, compositional, morphological and optical properties of the synthesized samples were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), Raman and photoluminescence (PL) spectra analyses. The Raman spectra of the synthesized CuInS2, CuInSe2 and CuInTe2 samples show the dominant A1 modes at 293, 172 and 121 cm−1 respectively. The possible chemical reaction and mechanism of nanocubes formation were discussed. The emission wavelength of as synthesized CuInS2, CuInSe2 and CuInTe2 samples were blue shifted at 746 nm (1.66 eV), 863 nm (1.43 eV) and 859 nm (1.44 eV) respectively.  相似文献   

19.
Ferroelectric Pb(Zr0.52Ti0.48)O3 thin films were deposited on the Pt/Ti/SiO2/Si substrate by a sol-gel method. As a direct electric field was applied on the films during thermal treatment, strain behavior and ferroelectric properties have been investigated. X-ray diffraction patterns show that great tensile strain exists nearby the interface of the 250 nm thin film while thermal treatment assisted with direct electric field can obviously relax it. The analysis of hysteresis loops indicates that the remnant polarization increases with the thermal treatment time. These results suggest that electric-field-assisted thermal treatment is an effective way to reduce films' tensile strain through the local plastic deformation in Pt layer and enhance the remnant polarization.  相似文献   

20.
Formation mechanism of H2Ti3O7 nanotubes by single-step reaction of crystalline TiO2 and NaOH has been investigated via transmission electron microscopy examinations of series specimens with different reaction times and extensive ab initio calculations. It was found that the growth mechanism includes several steps. Crystalline TiO2 reacts with NaOH, forming a highly disordered phase, which recrystallized into some H2Ti3O7 thin plates. H-deficiency on the top surface leads to an asymmetrical environment for the surface Ti3O2-7 layer. The calculations of the surface tension, elastic strain energy, interlayer coupling energy, and Coulomb force indicated that the asymmetrical environment is the principal driving force of the cleavage of the single sheets of H2Ti3O7 from the plates and the formation of the multiwall spiral nanotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号