首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Photocatalysis, electrolysis, water jet cavitation (WJC), alone and in combinations were applied to degrade an azo dye, Reactive Brilliant Red X-3B (X-3B). Experiments were conducted in a 4.0 L aqueous solution with different initial dye concentrations, TiO2 dose, and solution pH. WJC substantially increased the photocatalytic, electrolytic and photocatalytic–electrolytic rates of the dye removal. The observed first-order rate of X-3B decolorization in the process of combined photocatalysis and electrolysis coupled with WJC was 1.6–2.9 times of that in the process of combined photocatalysis and electrolysis coupled with mechanical stirring. The rate enhancements may be attributed primarily to the reduced diffusion layer thickness on the electrodes and the deagglomeration of photocatalyst particles due to the chemical and physical effects of WJC. Under the conditions of 80 mg/L X-3B solution, 100 mg/L TiO2 dose and solution pH 6.3, 97% and 71% of color and chemical oxygen demand (CODCr) were removed, respectively, within 90-min photocatalytic–electrolytic treatment coupled with WJC. During this process, azo groups and naphthalene, benzene and triazine structures of the dye can be destroyed. Industrial textile effluent was also investigated, and a positive synergistic effect between photocatalytic–electrolytic system and WJC was observed considering color removal.  相似文献   

3.
Nowadays, Ag–CdO alloys are widely used in electrical contact applications, because of their good electrical and thermal conductivity is as well as high resistance to arc erosion and contact welding. Considering the restricted use of Cd due to its toxicity, it is necessary to find a material that can replace those alloys. The objective of this work was to study the possibility of obtaining an Ag–ZnO alloy from an Ag–Zn solid solution powders by means of a mechanochemical method. The mechanochemical process was carried out in a SPEX 8000D mill, under air and with ethanol as a reaction agent. Based on the results obtained, it can be concluded that an Ag–ZnO alloy with a fine and uniform ZnO distribution in the Ag matrix can be obtained by applying the mechanochemical process for 25 h.  相似文献   

4.
P-type ZnO was realized by dual-doping with nitrogen and silver via electrostatic-enhanced ultrasonic spray pyrolysis. The structural, electrical, and optical properties were explored by XRD, Hall-effect, and optical transmission spectra. The resistivity of ZnO:(N,Ag) film was found to be 56 Ω cm−1 with the high mobility of 76.1 cm2/V s. Compared with ZnO:Ag film, ZnO:(N,Ag) film exhibited a higher and more stable optical transmittance.  相似文献   

5.
A new type of composite photocatalysts (ZnO/TiO2–B) with Zinc oxide nanoparticles dispersed on boron doped titanium dioxide was prepared via a sol–gel method. The as-prepared powders were characterized by HRTEM, XRD, XPS, UV–vis DRS, and PL techniques. The results reveal that B3+ ions are doped into the TiO2 lattice in interstitial mode, while ZnO nanoparticles are dispersed on the surface of TiO2. The absorption of photocatalysts was extended into visible light region and the photogenerated electrons and holes were separated efficiently. Hence, ZnO/TiO2–B composite photocatalyst exhibits much better photocatalytic activity than those of pure TiO2 and TiO2–B on photodegradation of 4-chlorophenol under visible light irradiation.  相似文献   

6.
A microstructural study of DC-sputtered Fe93−xZr3B4Agx films on Si(0 0 1) substrates has been carried out using X-ray diffraction (XRD) and transmission electron microscopy (TEM). All samples were deposited as a function of additive Ag content (x=0–6 at%), and annealed in the range of temperature, 300–600°C, for 1 h in order to obtain enhanced soft magnetic properties. Through XRD and TEM investigation, Ag-free Fe93Zr3B4 films on Si(0 0 1) substrates consisted of nano-crystalline Fe-based phases. In the presence of Ag additive element, the microstructure of as-deposited Fe93−xZr3B4Agx films consisted of a mixture of majority of Fe-based amorphous and Ag crystalline phases. In this case, additive element, Ag played a role in retarding the formation of Fe-based crystalline phases during deposition, and insoluble nano-crystalline Ag particles were dispersed in the Fe-based amorphous matrix. As the content of Ag increased, the intensity of Ag crystalline XRD peak increased. Crystallization of Fe-based amorphous phase in the matrix of Fe88Zr3B4Ag5 thin films occurred at an annealing temperature of 400°C. In the case of Fe88Zr3B4Ag5 films annealed at 500°C, a much enhanced permeability of the Fe-based alloy thin films associated with nano-crystalline phases was achieved.  相似文献   

7.
TiO2-core/ZnO-shell nanorods were synthesized using a two-step process: the synthesis of TiO2 nanorods using a hydrothermal method followed by atomic layer deposition of ZnO. The mean diameter and length of the nanorods were ~300 nm and ~2.3 μm, respectively. The cores and shells of the nanorods were monoclinic-structured single-crystal TiO2 and wurtzite-structured single-crystal ZnO, respectively. The multiple networked TiO2-core/ZnO-shell nanorod sensors showed responses of 132–1054 % at ethanol (C2H5OH) concentrations ranging from 5 to 25 ppm at 150 °C. These responses were 1–5 times higher than those of the pristine TiO2 nanorod sensors at the same C2H5OH concentration range. The substantial improvement in the response of the pristine TiO2 nanorods to C2H5OH gas by their encapsulation with ZnO may be attributed to the enhanced absorption and dehydrogenation of ethanol. In addition, the enhanced sensor response of the core–shell nanorods can be attributed partly to changes in resistance due to both the surface depletion layer of each core–shell nanorod and the potential barriers built in the junctions caused by a combination of homointerfaces and heterointerfaces.  相似文献   

8.
A novel method, recently proved useful for the synthesis of nanoparticles, has been now used for the preparation of very stable silver iodide–trihexyl(tetradecyl)phosphonium chloride ionanofluids. Only the ionic liquid and the AgI bulk powder were needed. Synthesized nanofluids are much more stable than those obtained by simple dispersion of the nanoparticles in the base fluid. The ionanofluids were synthesized at different concentrations (up to 50 % w/w) and characterized in terms of physical, electrical, and thermal properties (density, viscosity, refractive index, electric conductivity, and specific heat capacity). A very high increase in the electric conductivity of the base ionic liquid was expected due to the high concentration of nanoparticles achieved. Nonetheless, it was not found, probably due to the reduction of ions mobility caused by the increase of the viscosity in ionanofluids with concentrations over 20 % w/w. An appropriate characterization of nanoparticles composing the nanofluids was carried out (UV–Vis absorbance, shape and size distribution). The diameter of the particles was measured and calculated by different techniques and approximations, obtaining a value of 2–4 nm. They were spherical, well-defined, and not agglomerated, with a narrow size distribution. The X-ray powder diffraction confirmed that no structural change took place in the transformation of the bulk solid to nanoparticles.  相似文献   

9.
In the present study, a porous clay-like support with unique characteristics was used for the synthesis and immobilization of ZnO nanostructures to be used as sonocatalyst for the sonocatalytic decolorization of methylene blue (MB) dye in the aqueous phase. As a result, the sonocatalytic activity of ZnO–biosilica nanocomposite (77.8%) was higher than that of pure ZnO nanostructures (53.6%). Increasing the initial pH from 3 to 10 led to increasing the color removal from 41.8% to 88.2%, respectively. Increasing the sonocatalyst dosage from 0.5 to 2.5 g/L resulted in increasing the color removal, while further increase up to 3 g/L caused an obvious drop in the color removal. The sonocatalysis of MB dye over ZnO–biosilica nanocomposite was temperature-dependent. The presence of methanol produced the most adverse effect on the sonocatalysis of MB dye. The addition of chloride and carbonate ions had a negligible effect on the sonocatalysis, while the addition of persulfate ion led to increasing the color removal from 77.8% to 99.4% during 90 min. The reusability test exhibited a 15% drop in the color removal (%) within three consecutive experimental runs. A mineralization efficiency of 63.2% was obtained within 4 h.  相似文献   

10.
Kochurin  E. A.  Kuznetsov  E. A. 《JETP Letters》2022,116(12):863-868
JETP Letters - We present the results of direct numerical simulation of three-dimensional acoustic turbulence in medium with weak positive dispersion. It is shown that at the beginning of the...  相似文献   

11.
We demonstrate the synthesis and investigate the electrical and optical characteristics of ‘nanocorals’ (NCs) composed of CuO/ZnO grown at low temperature through the hydrothermal approach. High-density CuO nanostructures (NSs) were selectively grown on ZnO nanorods (NRs). The synthesized NCs were used to fabricate p–n heterojunctions that were investigated by the current density–voltage (JV) and the capacitance–voltage (CV) techniques. It was found that the NC heterojunctions exhibit a well-defined diode behavior with a threshold voltage of about 1.52 V and relatively high rectification factor of ~760. The detailed forward JV characteristics revealed that the current transport is controlled by an ohmic behavior for V≤0.15 V, whereas at moderate voltages 1.46≤V<1.5 the current follows a J? α?exp(βV) relationship. At higher voltages (≥1.5 V) the current follows the relation J? α? V 2, indicating that the space-charge-limited current mechanism is the dominant current transport. The CV measurement indicated that the NC diode has an abrupt junction. The grown CuO/ZnO NCs exhibited a broad light absorption range that is covering the UV and the entire visible parts of the spectrum.  相似文献   

12.
《Current Applied Physics》2020,20(5):703-706
We investigated the photoluminescence (PL) characteristics of MoS2–Au hybrid nanostructures, fabricated by nanosphere lithography and wet-transfer techniques. Two kinds of Au nanostructures - such as nanotriangles (NTs) and nanoholes (NHs) - were fabricated for comparison. MoS2 monolayers on both NT and NH arrays exhibited enhanced PL intensity, compared with those on SiO2/Si substrates and flat Au thin films. Numerical simulations revealed clear distinction in the electric field intensity distributions in the NT and NH arrays at the PL excitation wavelength. Such difference could be attributed to the excitation of localized and propagating surface plasmon in the NT and NH arrays. This work helps us to understand how the plasmonic NT and NH arrays affect the physical properties of the MoS2 monolayers on them.  相似文献   

13.
Optically clear glasses in the ZnO–Bi2O3–B2O3 (ZBBO) system were fabricated via the conventional melt-quenching technique. Dielectric constant and loss measurements carried out on ZBBO glasses unraveled nearly frequency (1 kHz–10 MHz)-independent dielectric characteristics associated with significantly low loss (D?=?0.004). However, weak temperature response was found with temperature coefficient of dielectric constant 18?±?4 ppm °C?1 in the 35–250 °C temperature range. The conduction and relaxation phenomena were rationalized using universal AC conductivity power law and modulus formalism respectively. The activation energy for relaxation determined using imaginary parts of modulus peaks was 2.54 eV which was close to that of the DC conduction implying the involvement of similar energy barriers in both the processes. Stretched and power exponents were temperature dependent. The relaxation and conduction in these glasses were attributed to the hoping and migration of Bi3+ cations in their own and different local environment.  相似文献   

14.
A general strategy of Al–O–Al structure in various aluminosilicate was evaluated by combining triple-quantum magic angle spinning (3QMAS) and double-quantum homo-nuclear correlation under magic angle spinning (DQMAS) solid-state nuclear magnetic resonance (NMR) measurements with the aid of high magnetic field NMR (800 MHz for 1H Larmor frequency). The results show that in many cases the direct detection of Al–O–Al sites in aluminosilicate crystals and glasses is possible; hence the extent of aluminum avoidance can be directly elucidated. Specifically, experimental evidence of Al–O–Al linkages in several aluminosilicate materials with Si/Al >1 was straightforwardly confirmed; and the existence of Al–O–Al is considered to have little correlation with the Si/Al ratio, but it may be strongly related to the cation and local structural arrangement. In addition, the presence of tri-clusters of (Si, Al)O4-tetrahedra in aluminosilicate framework was proposed, which was thought to act as nuclei for formation and incorporation of cations to achieve charge neutrality.  相似文献   

15.
Thin films of Ag–ZnO samples deposited on glass substrates with a different percentage of Ag content (1, 2, and 3 at%) were synthesized, at room temperature, by a dip-coating sol-gel method. The obtained samples are hexagonal wurtzite structure. The average grain size of deposits is about 5 nm. Up to 3 at%, c-axis lattice parameter shifts toward a higher value, which indicates that silver atoms replace Zn atoms in the crystal lattice. As shown by the DRX spectra, growth rate in the (101) direction is favored by the presence of silver ions in the ZnO. The layers present a homogeneous crystallites distribution, as we can remark it on SEM micrographs and exhibit a very low roughness according to AFM images. The entire samples exhibit a transmission value greater than 80 %, in the visible region, while the maximum is obtained for those doped at 2 at%. Energy band varies between 3.15 eV and 3.25 eV. The wider gap obtained is that of the ZnO layer doped with 2 at%. It is worth noting a strong UV emission observed on PL spectrum, performed at very low temperature (liquid nitrogen temperature), for silver doped ZnO compared to that of pure ZnO.  相似文献   

16.
Optics and Spectroscopy - Photoactive ZnO–SnO2–Ag(AgCl) nanomaterials capable of generating chemically active single oxygen under action of UV and blue light are synthesized using a...  相似文献   

17.
Russian Physics Journal - The paper deals with ZnO, ZnO:Al 5 wt.% and ZnO:Al 5 wt.% – SiO2 5 wt.% thin films obtained on glass substrates by the sol gel process from film-forming solutions...  相似文献   

18.
Four glasses in ZnO–SiO2–B2O3 ternary system were prepared by the melt quenching method with the objective of optimizing sub-nanosecond emission over the UV region of zinc borosilicate glasses used in superfast scintillators. The effect of vanadium addition and heat treatment on phase formation, microstructure and photoluminescence properties of the glasses was characterized by means of DTA, XRD, SEM and fluorescence spectrophotometer. Vanadium contributed to the near-band-edge emission in two ways, by introducing donor levels in the energy band of ZnO particles and by facilitating the precipitation of ZnO and willemite crystals. Furthermore, nucleation of willemite and zinc oxide phases, which are both the origins of the intense emission bands in the UV region, was facilitated with increasing either the time or temperature of heat treatments. Photoluminescence spectra showed the elimination of the visible emission band which is favorable in scintillating glasses.  相似文献   

19.
Ruizhi Li 《哲学杂志》2015,95(10):1029-1048
The interface-mediated plastic deformation mechanisms of a semi-coherent Cu–Ag bimetal nanolayered structure subjected to out-of-plane tension are characterized by molecular dynamics simulations. Results show that the initially planar Cu–Ag nanolayers abruptly become wavy at a critical tensile strain. This planar-to-wavy interlayer transition is facilitated by the low shear resistance of the Cu–Ag interlayer interface, which slides to accommodate the out-of-plane deformation. The process redistributes misfit dislocations along the interface to reduce the bending energy of the wavy structure. High stress concentrations subsequently develop at the summits and valleys of the wavy Cu–Ag interlayer interfaces, from which micro-twinning partials are emitted. These results demonstrate that the wavelength of the wavy Cu–Ag nanolayer structure forms a critical length scale for the localization of spatially periodic defect sources for twin nucleation. This planar-to-wavy interlayer transition mechanism is only activated in nanolayered metals with interfaces that are amenable to sliding prior to twin or dislocation emissions.  相似文献   

20.
The effect of donor–acceptor (D-A) substituent and chain length on the electrical polarisabilities and first hyper polarisability of cis and trans biphenyl oligomeric compounds have been investigated using density functional theory-based hybrid functional CAM-B3LYP with 6-311G (2d,2p) basis set. Our extensive computational study reveals that both average polarisability and first hyper polarisability of the studied compounds increase with the increasing ethylene spacer chain length. Again the substitution of donor (NMe2) and acceptor (C≡N) at the para position of the phenyl rings to each oligomer shows order of magnitude increase of both αav and βav value compared to the unsubstituted one. This increased αav and βav values have been explained due to increasing charge transfer contribution resulting from decreasing optical energy gap (ΔE?=?S1???S0) upon D-A substitution. It is also observed that the charge transfer contribution to first hyperpolarisability (βCT) is more than the polarisability (αCT) for the studied molecules. The electronic spatial extent (<R2>) which is a measure of electron density volume around the molecule is found to play a major role along with the intramolecular charge transfer character to explain the non-linear variation of first hyperpolarisability (βav) as a function of ethylene spacer chain length (n) and D-A substitution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号