首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A constitutive modeling approach for shape memory alloy (SMA) wire by taking into account the microstructural phase inhomogeneity and the associated solid–solid phase transformation kinetics is reported in this paper. The approach is applicable to general thermomechanical loading. Characterization of various scales in the non-local rate sensitive kinetics is the main focus of this paper. Design of SMA materials and actuators not only involve an optimal exploitation of the hysteresis loops during loading–unloading, but also accounts for fatigue and training cycle identifications. For a successful design of SMA integrated actuator systems, it is essential to include the microstructural inhomogeneity effects and the loading rate dependence of the martensitic evolution, since these factors play predominant role in fatigue. In the proposed formulation, the evolution of new phase is assumed according to Weibull distribution. Fourier transformation and finite difference methods are applied to arrive at the analytical form of two important scaling parameters. The ratio of these scaling parameters is of the order of 106 for stress-free temperature-induced transformation and 104 for stress-induced transformation. These scaling parameters are used in order to study the effect of microstructural variation on the thermo-mechanical force and interface driving force. It is observed that the interface driving force is significant during the evolution. Increase in the slopes of the transformation start and end regions in the stress–strain hysteresis loop is observed for mechanical loading with higher rates.   相似文献   

3.
4.
基于Ginzburg-Landau动力学控制方程建立了NiTi形状记忆合金非等温相场模型,实现了对NiTi合金内应力诱导马氏体相变的数值模拟。同时将晶界能密度引入系统局部自由能密度,从而考虑多晶系统中晶界的重要作用。数值计算了单晶和多晶NiTi形状记忆合金在单轴机械载荷作用下微结构的动态演化过程和宏观力学行为,并重点研究了晶粒尺寸为60 nm的NiTi纳米多晶在低应变率下(0.000 5~15 s-1)力学行为的本征应变率敏感性。研究结果表明,单晶NiTi合金系统高温拉伸-卸载过程中马氏体相变均匀发生,未形成奥氏体-马氏体界面。而纳米多晶系统在加载阶段出现了马氏体带的形成-扩展现象,在卸载阶段出现了马氏体带的收缩-消失现象。相同外载作用过程中,NiTi单晶系统的宏观应力-应变曲线具有更大的滞回环面积,拥有更优的超弹性变形能力。计算结果显示,在中低应变率下纳米晶NiTi形状记忆合金应力-应变关系表现出较明显的应变率相关性,应变率升高导致材料相变应力提升。这一应变率相关性主要源于相场模型中外加载荷速率与马氏体空间演化速度的相互竞争关系。  相似文献   

5.
This paper deals with a novel constitutive framework suitable for non-coherent interfaces, such as cracks, undergoing large deformations in a geometrically exact setting. For this type of interface, the displacement field shows a jump across the interface. Within the engineering community, so-called cohesive zone models are frequently applied in order to describe non-coherent interfaces. However, for existing models to comply with the restrictions imposed by (a) thermodynamical consistency (e.g., the second law of thermodynamics), (b) balance equations (in particular, balance of angular momentum) and (c) material frame indifference, these models are essentially fiber models, i.e. models where the traction vector is collinear with the displacement jump. This constraints the ability to model shear and, in addition, anisotropic effects are excluded. A novel, extended constitutive framework which is consistent with the above mentioned fundamental physical principles is elaborated in this paper. In addition to the classical tractions associated with a cohesive zone model, the main idea is to consider additional tractions related to membrane-like forces and out-of-plane shear forces acting within the interface. For zero displacement jump, i.e. coherent interfaces, this framework degenerates to existing formulations presented in the literature. For hyperelasticity, the Helmholtz energy of the proposed novel framework depends on the displacement jump as well as on the tangent vectors of the interface with respect to the current configuration – or equivalently – the Helmholtz energy depends on the displacement jump and the surface deformation gradient. It turns out that by defining the Helmholtz energy in terms of the invariants of these variables, all above-mentioned fundamental physical principles are automatically fulfilled. Extensions of the novel framework necessary for material degradation (damage) and plasticity are also covered.  相似文献   

6.
We study the kinetics of phase transformations in solids using the peridynamic formulation of continuum mechanics. The peridynamic theory is a nonlocal formulation that does not involve spatial derivatives, and is a powerful tool to study defects such as cracks and interfaces.We apply the peridynamic formulation to the motion of phase boundaries in one dimension. We show that unlike the classical continuum theory, the peridynamic formulation does not require any extraneous constitutive laws such as the kinetic relation (the relation between the velocity of the interface and the thermodynamic driving force acting across it) or the nucleation criterion (the criterion that determines whether a new phase arises from a single phase). Instead this information is obtained from inside the theory simply by specifying the inter-particle interaction. We derive a nucleation criterion by examining nucleation as a dynamic instability. We find the induced kinetic relation by analyzing the solutions of impact and release problems, and also directly by viewing phase boundaries as traveling waves.We also study the interaction of a phase boundary with an elastic non-transforming inclusion in two dimensions. We find that phase boundaries remain essentially planar with little bowing. Further, we find a new mechanism whereby acoustic waves ahead of the phase boundary nucleate new phase boundaries at the edges of the inclusion while the original phase boundary slows down or stops. Transformation proceeds as the freshly nucleated phase boundaries propagate leaving behind some untransformed martensite around the inclusion.  相似文献   

7.
A matched asymptotic analysis is used to establish the correspondence between an appropriately scaled version of the governing equations of a phase-field model for fracture and the equations of the two-dimensional sharp-crack theory of Gurtin and Podio-Guidugli (1996) that arise on assuming that the bulk constitutive behavior is nonlinearly elastic, requiring that surface energy provides the only factor limiting crack propagation, and assuming that the fracture kinetics are isotropic. Consistent with the prominence of the configurational momentum balance at the crack tip in the latter theory, the approach capitalizes on the configurational momentum balance that arises naturally in the context of the phase-field model. The model developed and utilized here incorporates irreversibility of the phase-field evolution. This is achieved by introducing a suitable constraint and by carefully heeding the influence of that constraint on the kinetics underlying microstructural changes associated with fracture. The analysis is predicated on the assumption that the phase-field variable takes values in the closed interval between zero and unity.  相似文献   

8.
Many biological and optimal materials, at multiple scales, consist of what can be idealized as continuous bodies joined by structural interfaces. Mechanical characterization of the microstructure defining the interface can nowadays be accurately done; however, such interfaces are usually analyzed employing models where those properties are overly simplified. To introduce into the analysis the microstructure properties, a new model of structural interfaces is proposed and developed: a true structure is introduced in the transition zone, joining continuous bodies, with geometrical and material properties directly obtained from those of the interfacial microstructure. First, the case of an elliptical inclusion connected by a structural interface to an infinite matrix is solved analytically, showing that nonlocal effects follow directly from the introduction of the structure, related to the inclination of the connecting elements. Second, starting from a discrete structure, a continuous model of a structural interface is derived. The usual zero-thickness linear interface model is shown to be a special case of this more general continuous structural interface model. Then, a gradient approximation of the interface constitutive law is rigorously derived: it is the first example of the analytical derivation of a nonlocal interface model from the microstructure properties. The effects introduced in the mechanical behavior by both the continuous model and its gradient approximation are illustrated by solving, for the first time, the problem of a circular inclusion connected to an infinite matrix by a structural interface and subject to remote uniform stress.  相似文献   

9.
A moving discontinuous Galerkin finite element method with interface condition enforcement is formulated for flows with discontinuous interfaces. The underlying weak formulation enforces the interface condition separately from the conservation law, so that the residual only vanishes upon satisfaction of both. In this formulation, the discrete grid geometry is treated as a variable, so that, in contrast to the standard discontinuous Galerkin method, this method has both the means to detect interfaces, via interface condition enforcement, and to satisfy, via grid movement, the conservation law and its associated interface condition. The method therefore directly fits interfaces, including shocks, preserving a high-order representation up to the interface without requiring shock capturing or an upwind numerical flux to achieve stability. It can be generalized to flows with a priori unknown interfaces with nontrivial topology and curved interface geometry as well as to an arbitrary number of spatial dimensions. Unsteady flows are represented in a manner similar to steady flows using a space-time formulation. In addition to computing flows with interfaces, the method can represent point singularities in a flow field by degenerating cuboid elements. In general, the method works in conjunction with standard local grid operations, including edge collapse, to ensure that degenerate cells are removed. Test cases are presented for up to three-dimensional flows that provide an initial assessment of the stability and accuracy of the method.  相似文献   

10.
11.
J.D. Eshelby (1957, 1959) has calculated the deformation field associated with an ellipsoidal inclusion in a state of homogeneous strain within an infinite matrix. Since most real precipitates occur with facets, the strain within such an inclusion is not uniform. Thus, plate precipitates of θ′ in Al-Cu and η in Al-Au have coherent broad faces with mismatches of 1.34 and 4.95 % respect- ively and semicoherent or disordered interfaces at the edges with residual mismatches of about ?4.3 and ?1.00% normal to the broad faces. The deformation field in the matrix around such precipitates has been calculated using Kelvin's (1848) result for the stress field due to a point force. The calculations show the existence of high stresses near the edges of the precipitates where they have an appreciable misfit. Unlike the case of an ellipsoidal inclusion, the stress fields of these precipitates have dilatational components which can affect the diffusion of solute atoms to them and, thus, the kinetics of interface migration. The behavior of alloys containing these precipitates indicates that the moduli of the precipitates are somewhat greater than those of the matrices. The present calculations, based on the assumption that the two moduli are the same, underestimate the actual deformation field in the matrix. In real systems, therefore, the effects of the deformation field on misfit dislocation nucleation and kinetics of interface migration are likely to be somewhat greater in general.  相似文献   

12.
Interactions between dislocations and grain boundaries play an important role in the plastic deformation of polycrystalline metals. Capturing accurately the behaviour of these internal interfaces is particularly important for applications where the relative grain boundary fraction is significant, such as ultra fine-grained metals, thin films and micro-devices. Incorporating these micro-scale interactions (which are sensitive to a number of dislocation, interface and crystallographic parameters) within a macro-scale crystal plasticity model poses a challenge. The innovative features in the present paper include (i) the formulation of a thermodynamically consistent grain boundary interface model within a microstructurally motivated strain gradient crystal plasticity framework, (ii) the presence of intra-grain slip system coupling through a microstructurally derived internal stress, (iii) the incorporation of inter-grain slip system coupling via an interface energy accounting for both the magnitude and direction of contributions to the residual defect from all slip systems in the two neighbouring grains, and (iv) the numerical implementation of the grain boundary model to directly investigate the influence of the interface constitutive parameters on plastic deformation. The model problem of a bicrystal deforming in plane strain is analysed. The influence of dissipative and energetic interface hardening, grain misorientation, asymmetry in the grain orientations and the grain size are systematically investigated. In each case, the crystal response is compared with reference calculations with grain boundaries that are either ‘microhard’ (impenetrable to dislocations) or ‘microfree’ (an infinite dislocation sink).  相似文献   

13.
In this paper we introduce a peridynamic model for the evolution of damage from pitting corrosion capable of capturing subsurface damage. We model the anodic reaction in corrosion processes (in which electroplating is negligible) as an effective peridynamic diffusion process in the electrolyte/solid system coupled with a phase-change mechanism that allows for autonomous evolution of the moving interface. In order to simulate creation of subsurface damage, we introduce a corrosion damage model based on a stochastic relationship that connects the concentration in the metal to the damage of peridynamic mechanical-bonds that are superposed onto diffusion-bonds. We study convergence of this formulation for diffusion-dominated stage. The model leads to formation of a subsurface damage layer, seen in experiments. We validate results against experiments on pit growth rate and polarization data for pitting corrosion. We extend the 1D model to the 2D and 3D, and introduce a new damage-dependent corrosion model to account for broken mechanical bonds that enhance the corrosion rate. This coupled model can predict the pit shape and damage profile in materials with microstructural heterogeneities, such as defects, interfaces, inclusions, and grain boundaries.  相似文献   

14.
Atomistic calculations are used to model the nucleation of partial dislocations during a tensile deformation from bicrystal interfaces with dissociated structure. Interfaces with this type of structure occur primarily in materials with low intrinsic stacking fault energies. In this work, the initial structure of each bicrystal interface is refined using energy minimization techniques. Molecular dynamics simulations are then used to study the deformation of each interface in uniaxial tension perpendicular to the boundary plane at a constant strain rate. Analysis focuses on the evolution of the dissociated interface structure prior to the dislocation nucleation event and the resulting structure of the boundary after the emission of partial dislocations from the interface. Dislocation nucleation occurs predominantly at the dissociated interface structural unit, while the spacing between interface features is identified as an important length scale that affects the failure mode. The evolution of the dissociated interface structure and the nucleation of partial dislocations are found to be similar to results obtained in a previous atomistic study of the stress dependence of a lock formation containing a stair-rod dislocation.  相似文献   

15.
Bacterial flagellar filament can undergo a stress-induced polymorphic phase transition in both vitro and vivo environments. The filament has 12 different helical forms (phases) characterized by different pitch lengths and helix radii. When subjected to the frictional force of flowing fluid, the filament changes between a left-handed normal phase and a right-handed semi-coiled phase via phase nucleation and growth. This paper develops non-local finite element method (FEM) to simulate the phase transition under a displacement-controlled loading condition (controlled helix-twist). The FEM formulation is based on the Ginzburg-Landau theory using a one-dimensional non-convex and non-local continuum model. To describe the processes of the phase nucleation and growth, viscosity-type kinetics is also used. The non-local FEM simulation captures the main features of the phase transition: two-phase coexistence with an interface of finite thickness, phase nucleation and phase growth with interface propagation. The non-local FEM model provides a tool to study the effects of the interfacial energy/thickness and loading conditions on the phase transition.  相似文献   

16.
17.
An evolving material structure is in a non-equilibrium state, with free energy expressed by the generalized coordinates. A global approach leads to robust computations for the generalized thermodynamic forces. Those forces drive various kinetic processes, causing dissipation at spots, along curves, surfaces and interfaces, and within volumetric regions. The actual evolution path, and therefore the final equilibrium state, is determined by the energetics and kinetics. A virtual work principle links the free energy landscape and the kinetic processes, and assigns a viscous environment to every point on the landscape. The approach leads to a dynamical system that governs the evolution of generalized coordinates. The microstructural evolution is globally characterized by a basin map in the coordinate space; and by a diversity map and a variety map in the parameter space. The control of basin boundaries raises the issue of energetic and kinetic bifurcations. The variation of basin boundaries under different sets of controlling parameters provides an analytical way to plot the diversity maps of structural evolution. The project supported by the National Science Foundation (USA) through grant MSS-9258115, and by the National Natural Science Foundation of China  相似文献   

18.
基于相场法的物理融合神经网络PF-PINNs被成功用于两相流动的建模, 为两相流动的高精度直接数值模拟提供了全新的技术手段. 相场法作为一种新兴的界面捕捉方法, 其引入确保了界面的质量守恒, 显著提高了相界面的捕捉精度; 但是相场法中高阶导数的存在也降低了神经网络的训练速度. 为了提升计算训练过程的效率, 本文在PF-PINNS框架下, 参考深度混合残差方法MIM, 将化学能作为辅助变量以及神经网络的输出之一, 并修改了物理约束项的形式, 使辅助变量与相分数的关系式由硬约束转为了软约束. 上述两点改进显著降低了自动微分过程中计算图的规模, 节约了求导过程中的计算开销. 同时, 为了评估建立的PF-PINNS在雷诺数较高、计算量较大的场景中的建模能力, 本文将瑞利?泰勒RT不稳定性问题作为验证算例. 与高精度谱元法的定性与定量对比结果表明, 改进PF-PINNs有能力捕捉到两相界面的强非线性演化过程, 且计算精度接近传统算法, 计算结果符合物理规律. 改进前后的对比结果表明, 深度混合残差方法能够显著降低PF-PINNS的训练用时. 本文所述方法是进一步提升神经网络训练速度的重要参考资料, 并为探索高精度智能建模方法提供了全新的见解.   相似文献   

19.
A constitutive model to describe macroscopic elastic and transformation behaviors of polycrystalline shape-memory alloys is formulated using an internal variable thermodynamic framework. In a departure from prior phenomenological models, the proposed model treats initiation, growth kinetics, and saturation of transformation distinctly, consistent with physics revealed by recent multi-scale experiments and theoretical studies. Specifically, the proposed approach captures the macroscopic manifestations of three micromechanial facts, even though microstructures are not explicitly modeled: (1) Individual grains with favorable orientations and stresses for transformation are the first to nucleate martensite, and the local nucleation strain is relatively large. (2) Then, transformation interfaces propagate according to growth kinetics to traverse networks of grains, while previously formed martensite may reorient. (3) Ultimately, transformation saturates prior to 100% completion as some unfavorably-oriented grains do not transform; thus the total transformation strain of a polycrystal is modest relative to the initial, local nucleation strain. The proposed formulation also accounts for tension–compression asymmetry, processing anisotropy, and the distinction between stress-induced and temperature-induced transformations. Consequently, the model describes thermoelastic responses of shape-memory alloys subject to complex, multi-axial thermo-mechanical loadings. These abilities are demonstrated through detailed comparisons of simulations with experiments.  相似文献   

20.
A finite-strain phase field model for martensitic phase transformation and twinning in shape memory alloys is developed and confronted with the corresponding sharp-interface approach extended to interfacial energy effects. The model is set in the energy framework so that the kinetic equations and conditions of mechanical equilibrium are fully defined by specifying the free energy and dissipation potentials. The free energy density involves the bulk and interfacial energy contributions, the latter describing the energy of diffuse interfaces in a manner typical for phase-field approaches. To ensure volume preservation during martensite reorientation at finite deformation within a diffuse interface, it is proposed to apply linear mixing of the logarithmic transformation strains. The physically different nature of phase interfaces and twin boundaries in the martensitic phase is reflected by introducing two order-parameters in a hierarchical manner, one as the reference volume fraction of austenite, and thus of the whole martensite, and the second as the volume fraction of one variant of martensite in the martensitic phase only. The microstructure evolution problem is given a variational formulation in terms of incremental fields of displacement and order parameters, with unilateral constraints on volume fractions explicitly enforced by applying the augmented Lagrangian method. As an application, size-dependent microstructures with diffuse interfaces are calculated for the cubic-to-orthorhombic transformation in a CuAlNi shape memory alloy and compared with the sharp-interface microstructures with interfacial energy effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号