首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(Liquid + liquid) equilibrium data for (water + ethanol + 2-ethyl-1-hexanol) were measured at atmospheric pressure in the temperature range (298.2 to 313.2) K. A type 1 (liquid + liquid) phase diagram was obtained for this ternary system. The experimental tie-line data for this system were correlated with the UNIQUAC solution model. The values of the interaction parameters between each pair of components in the system were obtained for the UNIQUAC model with the experimental results. The root mean square deviation between the observed and calculated mole per cent was 1.70%. The mutual solubility of 2-ethyl-1-hexanol and water was also investigated by the addition of ethanol at different temperatures.  相似文献   

2.
Ionic liquids (ILs) are used as entrainers in azeotropic systems such as water + ethanol, water + 2-propanol, and water + tetrahydrofuran (THF). Ionic liquids consisting of a cation and an anion has limitless combinations, thereby making experimentation expensive and time taking. For the prediction of the liquid phase nonidealities resulting from molecular interactions, “COnductor-like Screening MOdel for Real Solvents” (COSMO-RS) approach is used in this work for the screening of potential ionic liquids. Initially benchmarking has been done on 12 reported isobaric IL based ternary systems with an absolute average deviation of 4.63% in vapor phase mole fraction and 1.07% in temperature. After successful benchmarking, ternary vapor + liquid equilibria for the azeotropic mixture of (a) ethanol + water, (b) 2-propanol + water, and (c) THF + water with combinations involving 10 cations (imidazolium, pyridinium, quinolium) and 24 anions were predicted. The VLE prediction, which gave the relative volatility, showed that the imidazolium based ionic liquid were the best entrainer for the separation of the three systems at their azeotropic point. ILs with [MMIM] cation in combination with acetate [OAc], chloride [Cl], and bromide [Br] anion gave the highest relative volatility.  相似文献   

3.
Oxygenates are used in gasoline to increase the octane number and reduce carbon monoxide emission. 2-methoxy-2,4,4-trimethylpentane (TOME) is a tertiary ether which can potentially be used in addition with current oxygenates. This compound can be produced by etherification of diisobutylene with methanol. During the etherification, water is formed due to the dehydration of methanol. The appearance of water can cause (liquid + liquid) phase split in the production process. In this work, several physical properties of systems containing water, methanol and TOME are studied for the first time. The liquid density of 2-methoxy-2,4,4-trimethylpentane is presented from T = (298.15 to 408.16) K. Excess enthalpies are reported for the binary system of (methanol + 2-methoxy-2,4,4-trimethylpentane) at (T = 298.15 K). The (liquid + liquid) equilibrium (LLE) for (water + 2-methoxy-2,4,4-trimethylpentane) from T = (283.15 to 318.15) K is determined. The LLE is also reported for the ternary system of (water + methanol + 2-methoxy-2,4,4-trimethylpentane) at T = (283.15 and 298.15) K. The UNIQUAC parameters were regressed to model VLE, excess enthalpy and LLE for the binary and ternary data with one set of parameters.  相似文献   

4.
(Liquid + liquid) equilibrium (LLE) data for (water + propionic acid + 2-ethyl-1-hexanol) were determined at atmospheric pressure over the temperature range of (298.15 to 308.15) K. A type-1 LLE phase diagram was obtained for this ternary system. The LLE data were correlated fairly well with UNIQUAC model, indicating the reliability of the UNIQUAC equation for this ternary system. The average root mean square deviation between the observed and calculated mole fractions was 1.57%. Distribution coefficients and separation factors were measured to evaluate the extracting capability of the solvent.  相似文献   

5.
(Liquid + liquid) equilibrium (LLE) and binodal curve data were determined for the systems (water + phenol + tert-butanol) at T = 298.15 K, (water + phenol + 2-butanol) and (water + phenol + 1-butanol) at T = 298.15 K and T = 313.15 K by the combined techniques of densimetry and refractometry. Type I curve (for tert-butanol) and Type II curves (for 1- and 2-butanol) were found. The data were correlated with the NRTL model and the parameters estimated present root mean square deviations below 2% for the system with tert-butanol and lower than 0.8% for the other systems.  相似文献   

6.
Phase transitions for (water + 1-methylnaphthalene + light aromatic hydrocarbon) ternary systems are observed at their (liquid + liquid) equilibria at T = (563, 573, and 583) K and (8.6 to 25.0) MPa. The phase transition pressures at T = (563, 573, and 583) K were measured for the five species of light aromatic hydrocarbons, o-, m-, p-xylenes, ethylbenzene, and mesitylene. The measurements of the phase transition pressures were carried out by changing the feed mole fraction of water and 1-methylnaphthalene in water free, respectively. Effects of the feed mole fraction of water on the phase transition pressures are very small. Increasing the feed mole fraction of 1-methylnaphthalene results in decreasing the phase transition pressures at constant temperature. The slopes depending on the feed mole fraction for 1-methylnaphthalene at the phase transition pressures are decreased with increasing temperature for (water + 1-methylnaphthalene + p-xylene), (water + 1-methylnaphthalene + o-xylene), and (water + 1-methylnaphthalene + mesitylene) systems. For xylene isomers, the highest and lowest of the phase transition pressures are obtained in the case of p- and o-xylenes, respectively. The phase transition pressures for ethylbenzene are lower than those in the case of p-xylene. The similar phase transition pressures are given for p-xylene and mesitylene.  相似文献   

7.
(Liquid + liquid) equilibrium (LLE) data for (water + acetic acid + 2-ethyl-1-hexanol) were measured at atmospheric pressure in the temperature range of (298.2 to 313.2) K. The UNIFAC model was used to predict the observed LLE data with a root-mean-square deviation value of 2.03%. A high degree of consistency of experimental data was obtained using the Othmer–Tobias correlation. The solubility of water in 2-ethyl-1-hexanol was measured at different temperatures.  相似文献   

8.
(Liquid + liquid) equilibrium data for the quaternary systems (water + 2-propanol + 1-butanol + potassium bromide) and (water + 2-propanol + 1-butanol + magnesium chloride) were measured at T = 313.15 K and T = 353.15 K. The overall salt concentrations were 5 and 10 mass percent. Ternary (liquid + liquid) equilibrium data for the salt-free system (water + 2-propanol + 1-butanol) were also determined and found to be in good agreement with data from the literature. The NRTL model for the activity coefficient was used to correlate the data. New interaction parameters were estimated, using the Simplex minimization method and a concentration-based objective function. The results are very satisfactory, with root mean square deviations between experimental and calculated compositions of both phases being less than 0.5%.  相似文献   

9.
(Liquid + liquid) equilibria and tie-lines for the ternary (water + ethanol + α-pinene, or β-pinene or limonene) and quaternary (water + ethanol + α-pinene + limonene) mixtures have been measured at T = 298.15 K. The experimental multicomponent (liquid + liquid) equilibrium data have been successfully represented in terms of the modified UNIQUAC model with binary parameters.  相似文献   

10.
An apparatus based on a static-analytic method assembled in this work was utilized to perform high pressure (vapour + liquid) equilibria measurements with uncertainties estimated at <5%. Complementary isothermal (vapour + liquid) equilibria results are reported for the (CO2 + 1-propanol), (CO2 + 2-methyl-1-propanol), (CO2 + 3-methyl-1-butanol), and (CO2 + 1-pentanol) binary systems at temperatures of (313, 323, and 333) K, and at pressure range of (2 to 12) MPa. For all the (CO2 + alcohol) systems, it was visually monitored to insure that there was no liquid immiscibility at the temperatures and pressures studied. The experimental results were correlated with the Peng–Robinson equation of state using the quadratic mixing rules of van der Waals with two adjustable parameters. The calculated (vapour + liquid) equilibria compositions were found to be in good agreement with the experimental values with deviations for the mol fractions <0.12 and <0.05 for the liquid and vapour phase, respectively.  相似文献   

11.
(Liquid + liquid equilibrium) (LLE) data for ternary system: (water + 2,3-butanediol + oleyl alcohol) has been measured at T = (300.2, 307.2, and 314.2) K. Complete phase diagrams were obtained by determining solubility and tie-line data. Tie-line compositions were correlated by Othmer–Tobias and Bachman methods. The nonrandom two liquids equation (NRTL) was used to correlate the phase equilibrium in the system using the interaction parameters determined from experimental data. It is found that NRTL could give a good correlation for the LLE data. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

12.
Complementary isothermal (vapor + liquid) equilibria data are reported for the (CO2 + 3-methyl-2-butanol), (CO2 + 2-pentanol), and (CO2 + 3-pentanol) binary systems at temperatures of (313, 323, and 333) K, and at pressure range of (2 to 11) MPa. For all (CO2 + alcohol) systems, it was visually monitored that there was no liquid immiscibility at the temperatures and pressures studied. The experimental data were correlated with the Peng–Robinson equation of state using the quadratic mixing rules of van der Waals with two adjustable parameters. The calculated (vapor + liquid) equilibria compositions were found to be in good agreement with the experimental data with deviations for the mole fractions <8% and <2% for the liquid and vapor phase, respectively.  相似文献   

13.
Liquid–liquid equilibrium (LLE) data were determined for the quaternary systems of {(water + methanol or ethanol) + m-xylene + n-dodecane} at three temperatures 298.15, 303.15 and 313.15 K and atmospheric pressure. The composition of liquid phases at equilibrium was determined by gas–liquid chromatography and the results were correlated with the UNIQUAC and NRTL activity coefficient models. The partition coefficients and the selectivity factor of the solvent are calculated and compared. The phase diagrams for the quaternary systems including both the experimental and correlated tie lines are presented.  相似文献   

14.
(Liquid + liquid) equilibria (LLE) data were presented for one ternary system of {water + octane + diisopropyl ether (DIPE)} and three quaternary systems of (water + 1-propanol + DIPE + octane, or methylbenzene, or heptane) at T = 298.15 K and p = 100 kPa. The experimental LLE data were correlated with the modified and extended UNIQUAC models. Distribution coefficients were derived from the experimental LLE data to evaluate the solubility behavior of components in organic and aqueous phases.  相似文献   

15.
Experimental (vapour + liquid) equilibrium results for the binary systems, (methanol + water) at the local atmospheric pressure of 95.3 kPa and at sub-atmospheric pressures of (15.19, 29.38, 42.66, 56.03, and 67.38) kPa, (water + glycerol) system at pressures (14.19, 29.38, 41.54, 54.72, 63.84, and 95.3) kPa and the (methanol + glycerol) system at pressures (32.02 and 45.3) kPa were obtained over the entire composition range using a Sweitoslwasky-type ebulliometer. The relationship of the liquid composition (x1) as a function of temperature (T) was found to be well represented by the Wilson model. Computed vapour phase mole fractions, activity coefficients and the measured values along with optimum Wilson parameters are presented.  相似文献   

16.
(Liquid + liquid) equilibrium (LLE) data for the (water + butyric acid + dodecanol) ternary system have been determined experimentally at T = (298.2, 308.2 and 318.2) K. Complete phase diagrams were obtained by determining binodal curves and tie lines. The reliability of the experimental tie lines was confirmed by using the Othmer–Tobias correlation. The UNIFAC method was used to predict the phase equilibrium in the ternary system using the interaction parameters determined from experimental data of CH3, CH2, COOH, OH and H2O functional groups. Distribution coefficients and separation factors were evaluated for the immiscibility region.  相似文献   

17.
Two liquid phases were formed as the addition of a certain amount of biological buffer 3-(N-morpholino)propane sulfonic acid (MOPS) in the aqueous solutions of tetrahydrofuran (THF) or 1,3-dioxolane. To evaluate the feasibility of recovering the cyclic ethers from their aqueous solutions with the aid of MOPS, we determined experimentally the phase diagrams of the ternary systems of {cyclic ether (THF or 1,3-dioxolane) + water + MOPS} at T = 298.15 K under atmospheric pressure. In this study, the solubility data of MOPS in water and in the mixed solvents of water/cyclic ethers were obtained from the results of a series of density measurements, while the (liquid + liquid) and the (solid + liquid + liquid) phase boundaries were determined by visually inspection. Additionally, the tie-line results for (liquid + liquid) equilibrium (LLE) and for (solid + liquid + liquid) equilibrium (SLLE) were measured using an analytical method. The reliability of the experimental LLE tie-line results data was validated by using the Othmer–Tobias correlation. These LLE tie-line values were correlated well with the NRTL model. The phase diagrams obtained from this study reveal that MOPS is a feasible green auxiliary agent to recover the cyclic ethers from their aqueous solutions, especially for 1,3-dioxolane.  相似文献   

18.
The extraction of aromatic compound toluene from alkane, dodecane, by mixed solvents (water + methanol), (water + ethanol) and (methanol + ethanol) have been studied by (liquid + liquid) equilibrium (LLE) measurements at three temperatures (298.15, 303.15, and 313.15) K and ambient pressure. The compositions of liquid phases at equilibrium were determined by gas liquid chromatography.The experimental tie-line data for three quaternary mixtures of {(water + methanol) + toluene + dodecane}, {(water + ethanol) + toluene + dodecane}, and {(methanol + ethanol) + toluene + dodecane} are presented. The experimental quaternary LLE data have been satisfactorily correlated by using the UNIQUAC and NRTL activity coefficient models. The parameters of the models have been evaluated and presented. The tie-line data of the studied quaternary mixtures also were correlated using the Hand method. The partition coefficients and the selectivity factor of solvent are calculated and compared for the three mixed solvents.The comparisons indicate that the selectivity factor for mixed solvent (methanol + ethanol) is higher than the other two mixed solvents at the three studied temperatures. However, considering the temperature variations of partition coefficients of toluene in two liquid phases at equilibrium, an optimum temperature may be obtained for an efficient extraction of toluene from dodecane by the mixed solvents.  相似文献   

19.
In this paper, isobaric (vapor + liquid) equilibrium (VLE) data for the binary system methanol + 2-butyl alcohol and the quaternary system methyl acetate + methanol + 2-butyl alcohol + 2-butyl acetate were determined at P = 101.33 kPa in a modified Rose still. The binary VLE data were found to be thermodynamic consistency by the Herrington method. The VLE data for the binary system were correlated by the Wilson and NRTL equations respectively, which were used to predict the VLE data of the quaternary system. The results showed that the Wilson and NRTL models matched well with the (vapor + liquid) phase equilibrium data. The deviations for the vapor-phase compositions and the equilibrium temperatures are reasonably small and the models are both suitable for these systems.  相似文献   

20.
(Liquid + liquid) equilibrium (LLE) data for (water + propionic acid + dipropyl ether) and (water + propionic acid + diisopropyl ether) were measured at T = 298.2 K and atmospheric pressure. The tie-line data were correlated by means of the UNIQUAC equation, and compared with results predicted by the UNIFAC method. A comparison of the extracting capabilities of the solvents was made with respect to distribution coefficients, separation factors, and solvent free selectivity bases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号