首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Dislocations are thought to be the principal mechanism of high ductility of the novel B2 structure intermetallic compounds YAg and YCu.In this paper,the edge dislocation core structures of two primary slip systems 〈100 〉{010} and 〈100 〉 {011} for YAg and YCu are presented theoretically within the lattice theory of dislocation.The governing dislocation equation is a nonlinear integro-differential equation and the variational method is applied to solve the equation.Peierls stresses for 〈100 〉 {010} and 〈100 〉 {011} slip systems are calculated taking into consideration the contribution of the elastic strain energy.The core width and Peierls stress of a typical transition-metal aluminide NiAl is also reported for the purpose of verification and comparison.The Peierls stress of NiAl obtained here is in agreement with numerical results,which verifies the correctness of the results obtained for YAg and YCu.Peierls stresses of the 〈100 〉 {011} slip system are smaller than those of〈100 〉 {010} for the same intermetallic compounds originating from the smaller unstable stacking fault energy.The obvious high unstable stacking fault energy of NiAl results in a larger Peierls stress than those of YAg and YCu although they have the same B2 structure.The results show that the core structure and Peierls stress depend monotonically on the unstable stacking fault energy.  相似文献   

2.
Ph. Carrez  A.M. Walker  A. Metsue 《哲学杂志》2013,93(16):2477-2485
Computer simulations have previously been used to derive the atomic scale properties of the cores of screw dislocations in Mg2SiO4 forsterite by direct calculation using parameterized potentials and via the Peierls–Nabarro model using density functional theory. We show that, for the [001] screw dislocation, the parameterized potentials reproduce key features of generalized stacking fault energies when compared to the density functional theory results, but that the predicted structure of the dislocation core differs between direct simulation and the Peierls–Nabarro model. The [001] screw dislocation is shown to exhibit a low-energy non-planar core. It is suggested that for this dislocation to move its core may need to change structure and form a high-energy planar structure similar to that derived from the Peierls–Nabarro model. This could lead to dislocation motion via an unlocking–locking mechanism and explain the common experimental observation of long straight screw dislocation segments in deformed olivine.  相似文献   

3.
Markus Lazar 《哲学杂志》2013,93(34):3246-3275
Abstract

Non-singular dislocation continuum theories are studied. A comparison between Peierls–Nabarro dislocations and straight dislocations in strain gradient elasticity is given. The non-singular displacement fields, non-singular stresses, plastic distortions and dislocation core shapes are analysed and compared for the two models. The main conclusion of this study is that due to their characteristic properties, the non-singular displacement fields, non-singular stresses and dislocation core shape of screw and edge dislocations obtained in the framework of strain gradient elasticity are more realistic and physical than the corresponding fields of the Peierls–Nabarro model. Strain gradient elasticity of dislocations is a continuum dislocation theory including a weak non-locality within the dislocation core and predicting the size and shape of the dislocation core. The dislocation core is narrower in the strain gradient elasticity dislocation model than in the Peierls–Nabarro model and more evenly distributed in two dimensions. The present analysis shows that for the modelling of the dislocation core structure the non-singular dislocation fields of strain gradient elasticity are the suitable ones.  相似文献   

4.
He Wei 《哲学杂志》2013,93(27):2333-2354
We present a generalized Peierls–Nabarro model for curved dislocations incorporating directly the Peierls energies for both straight dislocations and dislocation kinks. In our model, the anisotropic elastic energy is calculated efficiently using the discrete Fourier transform on the discrete lattice sites of the slip plane, and the discreteness in both the elastic energy and the misfit energy is included. We have used our model to calculate the kink migration and nucleation energies of the 30° dislocations in silicon. The results agree well with those obtained using atomistic potentials and first principles calculations, and the experimental results.  相似文献   

5.
We report the first ab initio density-functional study of <111> screw dislocation cores in the bcc transition metals Mo and Ta. Our results suggest a new picture of bcc plasticity with symmetric and compact dislocation cores, contrary to the presently accepted picture based on continuum and interatomic potentials. Core energy scales in this new picture are in much better agreement with the Peierls energy barriers to dislocation motion suggested by experiments.  相似文献   

6.
Benoit Gars 《哲学杂志》2013,93(11):1390-1421
The effect of a free surface on the Peierls stress of a perfect dislocation, as well as on one of two dislocation partials under a free surface, has been accounted for by considering the Lubarda–Markenscoff variable-core dislocation model (VCM). The VCM dislocation smears the Burgers vector, while producing on the slip plane the Peierls–Nabarro sinusoidal relation between the stress and the slip discontinuity with a variable width. Here the core radius is allowed to depend on the distance to the free surface and the other partial. The Peierls stress is computed as a configurational force by accounting for all the energies and the image stresses to satisfy the traction-free boundary conditions. The results are applied to aluminum and copper and comparisons are made with atomistic calculations in the literature that show that the partials merge as they approach the free surface.  相似文献   

7.
We report the first ab initio density-functional study of the strain field and Peierls stress of isolated <111> screw dislocations in bcc Mo and Ta. The local dislocation strain field is self-consistently coupled to the long-range elastic field using a flexible boundary condition method. This reduces the mesoscopic atomistic calculation to one involving only degrees of freedom near the dislocation core. The predicted equilibrium core for Mo is significantly different from previous atomistic results and the Peierls stress shows significant non-Schmid behavior as expected for the bcc metals.  相似文献   

8.
D. E. Segall  C. Li 《哲学杂志》2013,93(32):5083-5101
We present a comparative study of the influence of atomic-scale surface steps on dislocation nucleation at crystal surfaces based on an all atom method and a hierarchal multiscale approach. The multiscale approach is based on the variational boundary integral formulation of the Peiersl–Nabarro dislocation model in which interatomic layer potentials derived from atomic calculations of generalized stacking fault energy surfaces are incorporated. We have studied nucleation of screw dislocations in two bcc material systems, molybdenum and tantalum, subjected to simple shear stress. Compared to dislocation nucleation from perfectly flat surfaces, the presence of atomic scale surface steps rapidly reduces the critical stress for dislocation nucleation by almost an order of magnitude as the step height increases. In addition, they may influence the slip planes on which dislocation nucleation occurs. The results of the all atom method and the multiscale approach are in good agreement, even for steps with height of only a single atomic layer. Such corroboration supports the further use of the multiscale approach to study dislocation nucleation phenomena in more realistic geometries of technological importance, which are beyond the reach of all current atom simulations.  相似文献   

9.
10.
The dislocation widths and Peierls stresses of glide dislocations and shuffle dislocations in graphene have been studied by the improved Peierls-Nabarro (P-N) equation which contains the discrete correction. The discrete parameter is obtained from a simple dynamic model in which the interaction attributed to the variation of bond length and angle was considered. The restoring force in the improved P-N equation is given by the gradient of the generalized stacking fault energy surface (γ-surface). Our calculation shows that the widths of the shuffle dislocation and the glide dislocation are narrow and the width of the shuffle dislocation is about twice wider than the glide dislocation. The Peierls stress of a shuffle dislocation is one order of magnitude smaller than that of a glide dislocation. As a consequence, the shuffle dislocation moves more easily than the glide dislocation.  相似文献   

11.
The second nearest-neighbor modified embedded atom method (2NN-MEAM) is used to investigate the generalized stacking fault (GSF) energy surfaces of eight FCC metals Cu, Ag, Au, Ni, Pd, Pt, Al and Pb. An offset is observed in all the metals for the displacement δus of unstable stacking fault energy from the geometrically symmetric displacement point . The offset value is the greatest for Al and the smallest for Ag. By analyzing the stable stacking fault energy γsf and unstable stacking fault energy γusf, it can be predicted that stacking fault is more favorable in Cu, Ag, Au, and especially in Pd than the other metals, while it is most preferred to create partial dislocation for Ag and to create full dislocation for Al.  相似文献   

12.
The dislocation width for shuffle 60° dislocation in semiconductors Si and Ge have been calculated by the improved P-N theory in which the discrete effect has been taken into account. Peierls barrier and stress have been evaluated with considering the contribution of strain energy. The discrete effect make dislocation width wider, and Peierls barrier and stress lower. The dislocation width of 60° dislocation in Si and Ge is respectively about 3.84 Å and 4.00 Å (~1b, b is the Burgers vector). In the case of 60° dislocation, after considering the contribution of strain energy, Peierls barrier and stress are increased. The Peierls barrier for 60° dislocation in Si and Ge is respectively about 15 meV/Å and 12–14 meV/Å, Peierls stress is about 3.8 meV/Å3 (0.6 GPa) and 2.7–3.3 meV/Å3 (0.4–0.5 GPa). The Peierls stress for Si agrees well with the numerical results and the critical stress at 0 K extrapolated from experimental data. Ge behaves similarly to Si.  相似文献   

13.
Won-Seok Ko 《哲学杂志》2013,93(16):1745-1753
Atomistic simulations based on interatomic potentials have frequently failed to correctly reproduce the brittle fracture of materials, showing an unrealistic blunting. We analyse the origin of the unrealistic blunting during atomistic simulations by modified embedded-atom method (MEAM) potentials for experimentally well-known brittle materials such as bcc tungsten and diamond silicon. The radial cut-off which has been thought to give no influence on MEAM calculations is found to have a decisive effect on the crack propagation behaviour. Extending both cut-off distance and truncation range can prevent the unrealistic blunting, reproducing many well-known fracture behaviour which have been difficult to reproduce. The result provides a guideline for future atomistic simulations that focus on various fracture-related phenomena including the failure of metallic-covalent bonding material systems using MEAM potentials.  相似文献   

14.
15.
Ph. Carrez  D. Ferré 《哲学杂志》2013,93(22):3229-3247
We present here the first numerical modelling of dislocations in MgSiO3 post-perovskite at 120?GPa. The dislocation core structures and properties are calculated through the Peierls–Nabarro model using the generalized stacking fault (GSF) results as a starting model. The GSFs are determined from first-principle calculations using the VASP code. Dislocation properties such as planar core spreading and Peierls stresses are determined for the following slip systems: [100](010), [100](001), [100](011), [001](010), [001](110), [001](100), [010](100), [010](001), ½[110](001) and ½[110](110). Our results confirm that the MgSiO3 post-perovskite is a very anisotropic phase with a plasticity dominated by dislocation glide in the (010) plane.  相似文献   

16.
17.
The strengthening mechanisms in bimetallic Cu/Ni thin layers are investigated using a hybrid approach that links the parametric dislocation dynamics method with ab initio calculations. The hybrid approach is an extension of the Peierls–Nabarro (PN) model to bimaterials, where the dislocation spreading over the interface is explicitly accounted for. The model takes into account all three components of atomic displacements of the dislocation and utilizes the entire generalized stacking fault energy surface (GSFS) to capture the essential features of dislocation core structure. Both coherent and incoherent interfaces are considered and the lattice resistance of dislocation motion is estimated through the ab initio-determined GSFS. The effects of the mismatch in the elastic properties, GSFS and lattice parameters on the spreading of the dislocation onto the interface and the transmission across the interface are studied in detail. The hybrid model shows that the dislocation dissociates into partials in both Cu and Ni, and the dislocation core is squeezed near the interface facilitating the spreading process, and leaving an interfacial ledge. The competition of dislocation spreading and transmission depends on the characteristics of the GSFS of the interface. The strength of the bimaterial can be greatly enhanced by the spreading of the glide dislocation, and also increased by the pre-existence of misfit dislocations. In contrast to other available PN models, dislocation core spreading in the two dissimilar materials and on their common interface must be simultaneously considered because of the significant effects on the transmission stress.  相似文献   

18.
The decohesion energy and the energy of unstable stacking faults for all cracking planes and dislocation slip systems observed experimentally are calculated using the molecular dynamics method with N-particle atomic potentials. A dimensionless parameter characterizing the brittle behavior of the material is calculated for basis, prism, and pyramid faces in terms of the model elaborated by Kelly et al. and extended by Rice and Thompson. Cleavage in Ti3Al is due to low decohesion energy values, which facilitates cracking, and high energies of unstable stacking faults, which prevents the formation of a plastic zone and stress relaxation at its vertex.  相似文献   

19.
Dislocation velocity and mobility are studied via molecular dynamics simulation for a 60 dislocation dipole in silicon crystal. The atomic interactions are described using the Stillinger–Weber potential and the external stress is applied by means of the Parrinello–Rahman algorithm. It is found that the dislocation begins to move when the applied stress is larger than the Peierls stress, and the calculated Peierls stress decreases as the temperature increases, which is in agreement with the Peierls–Nabarro model. The dislocation velocity at relatively low temperature is insensitive to variation of temperature. In fact, the velocity increases monotonically as the stress increases, and eventually approaches its plateau velocity which is about 2900 m/s. At higher temperature, however, the velocity no longer increases monotonically as the stress increases and the plateau velocity decreases as the temperature increases. In general, the dislocation velocity decreases as the temperature increases, which is consistent with the phonon drag model.  相似文献   

20.

The use of periodic boundary conditions for modelling crystal dislocations is predicated on one's ability to handle the inevitable image effects. This communication deals with an often overlooked mathematical subtlety involved in dealing with the periodic dislocation arrays, that is conditional convergence of the lattice sums of image fields. By analysing the origin of conditional convergence and the numerical artefacts associated with it, we establish a mathematically consistent and numerically efficient procedure for regularization of the lattice sums and the corresponding image fields. The regularized solutions are free from the artefacts caused by conditional convergence and regain periodicity and translational invariance of the periodic supercells. Unlike the other existing methods, our approach is applicable to general anisotropic elasticity and arbitrary dislocation arrangements. The capabilities of this general methodology are demonstrated by application to a variety of situations encountered in atomistic and continuum modelling of crystal dislocations. The applications include introduction of dislocations in the periodic supercell for subsequent atomistic simulations, atomistic calculations of the core energies and the Peierls stress and continuum dislocation dynamics simulations in three dimensions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号