首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Excess heat capacities, (CPE)ijk of {1-methylpyrrolidin-2-one (i) + benzene (j) + o- or m- or p-chlorotoluene (k)} and CPE of their sub-binary {1-methylpyrrolidin-2-one (i) + benzene (j)}; {benzene (i) + m- or p-chlorotoluene (j)} mixtures have been determined using their measured heat capacities data at T = (293.15, 298.15, 303.15) K and 0.1 MPa using micro differential scanning calorimeter. The results are discussed in terms of Graph (which deals with the topology of the constituent molecules) theory. The results suggest that CPE and (CPE)ijk values commuted by Graph theory compare well with experimental values.  相似文献   

5.
6.
Densities (ρ) and speeds of sound (u) have been measured for (l-phenylalanine + 0.01 mol · kg−1 aqueous β-cyclodextrin) and (l-histidine + 0.01 mol · kg−1 aqueous β-cyclodextrin) systems at T = (293.15, 298.15, 303.15 and 308.15) K using the density and sound velocity Meter DSA 5000 M. The ρ and u values have been utilized to evaluate values of the partial molar volume (ϕv), transfer partial molar volume (Δtrϕv), partial molar isentropic compressibility (ϕk), and transfer partial molar isentropic compressibility (Δtrϕk) of the systems studied. The experimentally measured and calculated parameters have been interpreted in terms of host-guest and ion-hydrophilic interactions operative in the systems.  相似文献   

7.
8.
9.
10.
11.
12.
The nanoparticles of ZnO have been dispersed in base fluids of poly(ethylene glycol), PEG, and its aqueous solutions. Stability of these nanofluids has been verified with UV-Vis spectroscopy. Dynamic light scattering and size analyze laser methods were used to obtain particle size of the nanofluids investigated. The density, speed of sound and viscosity values for these nanofluids have been measured at T = (293.15, 298.15, 308.15 and 318.15) K. From these experimental data, the excess molar volume, VmE and isentropic compressibility, κs, have been determined. The behaviour of these values with temperature and concentration has been interpreted for clarifying the dispersion of ZnO nanoparticles in PEG and aqueous solution of PEG. The effects of ZnO nanoparticles and temperature have also been investigated on volumetric and transport properties of aqueous solutions of PEG. The VmE, was adequately fitted to the Redlich–Kister, Ott et al. and Singh et al. equations. The isentropic compressibility values were correlated with the polynomial equation. The Eyring-NRTL and Eyring-mNRF models have successfully been used for correlating the viscosity values of the nanofluids investigated with temperature dependency considered. The performance of the Einstein, Brinkman, Lundgren and Batchelor models in the prediction of viscosity values of the (ZnO + PEG) nanofluid has also been tested.  相似文献   

13.
14.
15.
The fundamental physical properties including density, viscosity, refractive index and relative permittivity, have been measured for binary mixtures of exo-tetrahydrodicyclopentadiene (JP-10) with four octane isomers (n-octane, 3-methylheptane, 2,4-dimethylhexane and 2,2,4-trimethylpentane) over the whole composition range at temperatures T = (293.15 to 313.15) K and pressure p = 0.1 MPa. The values of excess molar volume VmE, viscosity deviation (Δη), refractive index deviation (ΔnD) and relative permittivity deviation (Δεr) are then calculated. All of the values of VmE and Δη are observed to be negative, while those of ΔnD and Δεr are close to zero. The effects of temperature and composition on the variation of VmE values are discussed. The negative values of VmE and Δη are conductive to high-density and low-resistance of fuels, which is favorable for the design and preparation of advanced hydrocarbon fuels.  相似文献   

16.
The values of the density were measured for binary liquid mixtures of benzene and toluene with dichloromethane over entire range of concentration using a vibrating-tube densimeter at T = (288.15, 293.15, 298.15, and 303.15) K and atmospheric pressure. The excess molar volumes, calculated from the density results, are positive for the systems of dichloromethane with benzene over the whole concentration range and present an approximate sigmoid curve for the dichloromethane with toluene. The VmE values have been fitted to the Redlich–Kister polynomial equation, and other volumetric properties such as the partial molar volumes, Vi¯, the apparent molar volume, V?i, and the partial molar excess volumes at infinite dilution, (ViE¯), were calculated over the whole composition range. The Prigogine–Flory–Patterson (PFP) theory and its applicability in predicting VmE at T = 298.15 K are tested. Good agreement was found for the mixtures dichloromethane with benzene. For the mixtures dichloromethane with toluene, which shows an approximate S-shaped VmE behaviour, the correlation fails.  相似文献   

17.
18.
The enthalpies of solution in water, ΔsolHm, of some small peptides, namely the amides of five N-acetyl substituted amino acids of glycine, l-alanine, l-proline, l-valine, l-leucine and two cyclic anhydrides of glycine and l-sarcosine (diketopiperazines), were measured by isothermal calorimetry at T = (296.84, 306.89, and 316.95) K. The enthalpies of solution at infinite dilution at T = 298.15 K were derived and added to the enthalpies of sublimation, ΔsubHm, at the same temperature, to obtain the corresponding solvation enthalpies at infinite dilution, ΔsolvHm. Moreover, the partial molar heat capacities at infinite dilution at T = 298.15 K, Cp,2, were calculated by adding molar heat capacities of solid small peptides, Cp,m(cr), to the ΔsolCp,m values obtained from our experimental data. CH2 group contributions, in terms of solvation enthalpy and partial molar heat capacity, were −3.2 kJ · mol−1 and 89.3 J · K−1 · mol−1, respectively, in good agreement with the literature data. Simple additive methods were used to estimate the average molar enthalpy of solvation and partial molar heat capacity at infinite dilution for the 1/2CONH⋯CONH functional group in the small peptides. Values obtained were −46.7 kJ · mol−1 for solvation enthalpy and −42.4 J · K−1 · mol−1 for partial molar heat capacity, significantly lower than values obtained for the CONH functional group in monofunctional model compounds.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号