首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we study the stress and deformation fields generated by nonlinear inclusions with finite eigenstrains in anisotropic solids. In particular, we consider finite eigenstrains in transversely isotropic spherical balls and orthotropic cylindrical bars made of both compressible and incompressible solids. We show that the stress field in a spherical inclusion with uniform pure dilatational eigenstrain in a spherical ball made of an incompressible transversely isotropic solid such that the material preferred direction is radial at any point is uniform and hydrostatic. Similarly, the stress in a cylindrical inclusion contained in an incompressible orthotropic cylindrical bar is uniform hydrostatic if the radial and circumferential eigenstrains are equal and the axial stretch is equal to a value determined by the axial eigenstrain. We also prove that for a compressible isotropic spherical ball and a cylindrical bar containing a spherical and a cylindrical inclusion, respectively, with uniform eigenstrains the stress in the inclusion is uniform (and hydrostatic for the spherical inclusion) if the radial and circumferential eigenstrains are equal. For compressible transversely isotropic and orthotropic solids, we show that the stress field in an inclusion with uniform eigenstrain is not uniform, in general. Nevertheless, in some special cases the material can be designed in order to maintain a uniform stress field in the inclusion. As particular examples to investigate such special cases, we consider compressible Mooney-Rivlin and Blatz-Ko reinforced models and find analytical expressions for the stress field in the inclusion.  相似文献   

2.
Eigenstrains are created as a result of anelastic effects such as defects, temperature changes, bulk growth, etc., and strongly affect the overall response of solids. In this paper, we study the residual stress and deformation fields of an incompressible, isotropic, infinite wedge due to a circumferentially symmetric distribution of finite eigenstrains. In particular, we establish explicit exact solutions for the residual stresses and deformation of a neo-Hookean wedge containing a symmetric inclusion with finite radial and circumferential eigenstrains. In addition, we numerically solve for the residual stress field of a neo-Hookean wedge induced by a symmetric Mooney–Rivlin inhomogeneity with finite eigenstrains.  相似文献   

3.
The characteristic equations for the order of stress singularity of anisotropic bimaterial wedges subjected to traction boundary conditions are investigated. For an angle-ply bimaterial wedge, both fully bonded and frictional interfaces are considered, whereas for a monoclinic bimaterial wedge, a frictional interface is considered. Here, the Stroh formalism and the separation of variables technique are used. In general, the order of stress singularity can be real or complex, but for the special geometry of a crack along the frictional interface of a monoclinic composite, it is always real. Explicit characteristic equations for the order of singularity are presented for an aligned orthotropic composite with a frictional interface. Numerical results are given for an angle-ply bimaterial wedge and a monoclinic bimaterial wedge consisting of a graphite/epoxy fiber-reinforced composite.  相似文献   

4.
This research is devoted to the study of anisotropic bimaterials with Kelvin-type viscoelastic interface under antiplane deformations. First we derive the Green’s function for a bimaterial with a Kelvin-type viscoelastic interface subjected to an antiplane force and a screw dislocation by means of the complex variable method. Explicit expressions are derived for the time-dependent stress field induced by the antiplane force and screw dislocation. Also presented is the time-dependent image force acting on the screw dislocation due to its interaction with the Kelvin-type viscoelastic interface. Second we investigate a rectangular inclusion with uniform antiplane eigenstrains embedded in one of the two bonded anisotropic half-planes by virtue of the derived Green’s function for a line force. The explicit expressions for the time-dependent stress field induced by the rectangular inclusion are obtained in terms of the simple logarithmic and exponential integral functions. It is observed that in general the stresses exhibit the logarithmic singularity at the four corners of the rectangular inclusion. Our results also show that when one side of the rectangular inclusion lies on the viscoelastic interface, the interfacial tractions are still regular at the two corners of the inclusion which are located on the interface. Last we address a finite Griffith crack normal to the viscoelastic interface by means of the obtained Green’s function for a screw dislocation. The crack problem is formulated in terms of a resulting singular integral equation which is solved numerically. The time-dependent stress intensity factors at the two crack tips are obtained and some interesting features are discussed.  相似文献   

5.
Summary The basic theory of nonlocal elasticity is stated with emphasis on the difference between the nonlocal theory and classical continuum mechanics. The concept of Nonlocal Interface Residual (NIR) is introduced in nonlocal theory. With the concept of NIR and the nonlocal constitutive equation, we calculate nonlocal stresses due to an edge dislocation on the interface of bi-materials. The nonlocal stress distribution along an interface is quite different from the classical one. Instead of the singularity in the dislocation core, nonlocal stress gives a finite value in the core. A maximum of the stress is also found near the dislocation core. Received 27 May 1997; accepted for publication 1 July 1997  相似文献   

6.
In this article,a direct stress approach based on finite element analysis to determine the stress intensity fac-tor is improved.Firstly,by comparing the rigorous solution against the asymptotic solution for a problem of an infinite plate embedded a central crack,we found that the stresses in a restrictive interval near the crack tip given by the rigorous solution can be used to determine the stress intensity fac-tor,which is nearly equal to the stress intensity factor given by the asymptotic solution.Secondly,the crack problem is solved numerically by the finite element method.Depending on the modeling capability of the software,we designed an adaptive mesh model to simulate the stress singularity.Thus, the stress result in an appropriate interval near the crack tip is fairly approximated to the rigorous solution of the corre-sponding crack problem.Therefore,the stress intensity factor may be calculated from the stress distribution in the appro-priate interval,with a high accuracy.  相似文献   

7.
In the previous paper by Yu and Diab (2013), several sets of boundary integral equations are derived for general anisotropic materials and corresponding equations for materials with different classes of symmetry are deduced. The work presented herein implements two sets of boundary element schemes to numerically solve the stress field. The integration on the element that has the singular point of the kernel is bounded and can be evaluated analytically. Four benchmark elastic problems are solved numerically to show the advantage of the two schemes over the conventional boundary element formulation in eliminating the boundary layer effect. The one with the weaker singularity has better convergence and gives more accurate results. The presented formulation also provides a direct approach to solve for stress field in a finite solid body in the presence of dislocations. Combined with discrete dislocations dynamics, boundary value problems with dislocations in finite bodies can be solved. Two examples, bending of a single crystal beam and pure shearing of a polycrystalline solid, are simulated by discrete dislocation dynamics using the scheme that has the weaker singularity. The comparisons with the published results using the well-established superposition technique validate the proposed formulation and show its quick convergence.  相似文献   

8.
For bonded dissimilar materials, the free-edge stress singularity usually prevails near the intersection of the free-surface and the interface. When two materials are bonded by using an adhesive, an interlayer develops between the two bonded materials. When a ceramic and a metal are bonded, the residual stress develops because of difference in the coefficient of thermal expansion. An interlayer may be inserted between the two materials to defuse the residual stress. Stress field near the intersection of the interface and free-surface in the presence of the interlayer is then very important for evaluating the strength of bonded dissimilar materials.In this study, stress distributions on the interface of bonded dissimilar materials with an interlayer were calculated by using the boundary element method to investigate the effect of the interlayer on the stress distribution. The relation between the free-edge singular stress fields of bonded dissimilar materials with and without an interlayer was investigated numerically. It was found that the influence of the interlayer on the stress distributions was confined within a small area of the order of interlayer thickness around the intersection of the interface and the free-surface when the interlayer was very thin. The stress distribution near the intersection of the interface and the free-surface was controlled by the free-edge stress singularity of the bonded dissimilar materials without the interlayer. In this case, the interlayer can be called free-edge singularity-controlled interlayer. If a stress distribution on the interface is known for one thickness of an interlayer h, stress distributions on the interface for other values of h can be estimated.  相似文献   

9.
The issue of stress singularity in an elastic cylinder of cylindrically anisotropic materials is examined in the context of generalized plane strain and generalized torsion. With a viewpoint that the singularity may be attributed to a conflicting definition of anisotropy at r=0, we study the problem through a compound cylinder in which the outer cylinder is cylindrically anisotropic and the core is transversely isotropic. By letting the radius of the core go to zero, the cylinder becomes one with the central axis showing no conflict in the radial and tangential directions. Closed-form solutions are derived for the cylinder under pressure, extension, torsion, rotation and a uniform temperature change. It is found that the stress is bounded everywhere, and singularity does not occur if the anisotropy at r=0 is defined appropriately. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Specimen size effects are a major cause of the unreliability of foam models in finite element codes. Here, the modified Arcan apparatus is used to investigate the biaxial yielding of ductile and brittle Al foams. This apparatus subjects a central section of a “butterfly-shaped” specimen to a uniform state of plane stress. The stresses have local maxima at the central section, thus ensuring that yielding occurs there. A yield envelope, which directly relates to the crushing process, can then be determined. Size effects are introduced when using conventional methods such as tri-axial or plate-shear tests. In such tests, averages of stress and strain are measured. These measures do not represent the actual yield event, because foam's internal structure is inhomogeneous and so is the deformation field. Strain localization and failure can occur at any weak layer of cells in the bulk. In this study, we have performed a series of biaxial tests on isotropic Alporas and anisotropic Hydro closed-cell Al foams of approximately equal densities. Alporas failed locally by a ductile phenomenon of progressive crushing of cells. It also possessed uniaxial strength asymmetry. Hydro specimens parallel and perpendicular to ‘foam rise’ were investigated. The Hydro foam developed a local, characteristic brittle crack at loads in the vicinity of the yield point. Phenomenological yield surfaces, which incorporate these features are obtained for the foams, and show dependence on both the deviatoric and hydrostatic stresses. We also provide expressions for the shear and hydrostatic strengths in terms of the uniaxial strengths. Finally, the size-independence of the yield surface is verified using the uniaxial compression of tapered specimens.  相似文献   

11.
Direct numerical simulations are used to examine laminar bubbly flows in vertical channels. For equal size nearly spherical bubbles the results show that at steady state the number density of bubbles in the center of the channel is always such that the fluid mixture there is in hydrostatic equilibrium. For upflow, excess bubbles are pushed to the walls, forming a bubble rich wall-layer, one bubble diameter thick. For downflow, bubbles are drawn into the channel center, leading to a wall-layer devoid of bubbles, of a thickness determined by how much the void fraction in the center of the channel must be increased to reach hydrostatic equilibrium. The void fraction profile can be predicted analytically using a very simple model and the model also gives the velocity profile for the downflow case. For the upflow, however, the velocity increase across the wall-layer must be obtained from the simulations. The slip velocity of the bubbles in the channel core and the velocity fluctuations are predicted reasonably well by results for homogeneous flows.  相似文献   

12.
提出了用插值矩阵法分析与各向异性材料界面相交的平面裂纹应力奇异性。基于V形切口尖端附近区域位移场渐近展开,将位移场的渐近展开式的典型项代入线弹性力学基本方程,得到关于平面内与复合材料界面相交的裂纹应力奇异性指数的一组非线性常微分方程的特征值问题,运用插值矩阵法求解,获得了平面内各向异性结合材料中与界面以任意角相交的裂纹尖端的应力奇异性指数随裂纹角的变化规律,数值计算结果与已有结果比较表明,本文方法具有很高的精度和效率。  相似文献   

13.
The stress field near the tip of a finite angle sharp notch is singular. However, unlike a crack, the order of the singularity at the notch tip is less than one-half. Under tensile loading, such a singularity is characterized by a generalized stress intensity factor which is analogous to the mode I stress intensity factor used in fracture mechanics, but which has order less than one-half. By using a cohesive zone model for a notional crack emanating from the notch tip, we relate the critical value of the generalized stress intensity factor to the fracture toughness. The results show that this relation depends not only on the notch angle, but also on the maximum stress of the cohesive zone model. As expected the dependence on that maximum stress vanishes as the notch angle approaches zero. The results of this analysis compare very well with a numerical (finite element) analysis in the literature. For mixed-mode loading the limits of applicability of using a mode I failure criterion are explored.  相似文献   

14.
The elastic field caused by the lattice mismatch between the quantum wires and the host matrix can be modeled by a corresponding two-dimensional hydrostatic inclusion subjected to plane strain conditions. The stresses in such a hydrostatic inclusion can be effectively calculated by employing the Green’s functions developed by Downes and Faux, which tend to be more efficient than the conventional method based on the Green’s function for the displacement field. In this study, Downes and Faux’s paper is extended to plane inclusions subjected to arbitrarily distributed eigenstrains: an explicit Green’s function solution, which evaluates the stress field due to the excitation of a point eigenstrain source in an infinite plane directly, is obtained in a closed-form. Here it is demonstrated that both the interior and exterior stress fields to an inclusion of any shape and with arbitrarily distributed eigenstrains are represented in a unified area integral form by employing the derived Green’s functions. In the case of uniform eigenstrain, the formulae may be simplified to contour integrals by Green’s theorem. However, special care is required when Green’s theorem is applied for the interior field. The proposed Green’s function is particularly advantageous in dealing numerically or analytically with the exterior stress field and the non-uniform eigenstrain. Two examples concerning circular inclusions are investigated. A linearly distributed eigenstrain is attempted in the first example, resulting in a linear interior stress field. The second example solves a circular thermal inclusion, where both the interior and exterior stress fields are obtained simultaneously.  相似文献   

15.
This paper presents the explicit forms of singular electro-mechanical field in a piezoelectric bonded wedge subjected to antiplane shear loads. Based on the complex potential function associated with eigenfunction expansion method, the eigenvalue equations are derived analytically. Contrary to the anisotropic elastic bonded wedge, the results of this problem show that the singularity orders are single-root and may be complex. The stress intensity factors of electrical and mechanical fields are dependent. However, when the wedge angles are equal (α=β), the orders become real and double-root. The real stress intensity factors of electrical and mechanical fields are then independent. The angular functions have been validated when they are compared with the results of several degenerated cases in open literatures.  相似文献   

16.
A general method for the study of piece-wise homogeneous strain fields in finite elasticity is proposed. Critical homogeneous deformations, supporting strain jumping, are defined for any anisotropic elastic material under constant Piola–Kirchhoff stress field in three-dimensional elasticity. Since Maxwell’s sets appear in the neighborhood of singularities higher than the fold, the existence of a cusp singularity is a sufficient condition for the emergence of piece-wise constant strain fields. General formulae are derived for the study of any problem without restrictions or fictitious stress–strain laws. The theory is implemented in a simple shearing plane strain problem. Nevertheless, the procedure is valid for any anisotropic material and three-dimensional problems.  相似文献   

17.
This paper deals with the inplane singular elastic field problems of inclusion corners in elastic media by an ad hoc hybrid-stress finite element method. A one-dimensional finite element method-based eigenanalysis is first applied to determine the order of singularity and the angular dependence of the stress and displacement field, which reflects elastic behavior around an inclusion corner. These numerical eigensolutions are subsequently used to develop a super element that simulates the elastic behavior around the inclusion corner. The super element is finally incorporated with standard four-node hybrid-stress elements to constitute an ad hoc hybrid-stress finite element method for the analysis of local singular stress fields arising from inclusion corners. The singular stress field is expressed by generalized stress intensity factors defined at the inclusion corner. The ad hoc finite element method is used to investigate the problem of a single rectangular or diamond inclusion in isotropic materials under longitudinal tension. Comparison with available numerical results shows the present method is an efficient mesh reducer and yields accurate stress distribution in the near-field region. As applications, the present ad hoc finite element method is extended to discuss the inplane singular elastic field problems of a single rectangular or diamond inclusion in anisotropic materials and of two interacting rectangular inclusions in isotropic materials. In the numerical analysis, the generalized stress intensity factors at the inclusion corner are systematically calculated for various material type, stiffness ratio, shape and spacing position of one or two inclusions in a plate subjected to tension and shear loadings.  相似文献   

18.
多重应力奇异性及其强度系数的数值分析方法   总被引:1,自引:1,他引:0  
以具有两个应力奇异性次数的平面问题为例,提出了一种利用普通的数值分析结果确定奇异点附近多重应力奇异性的各阶次数以及相应的应力强度系数的数值分析方法,计算实例表明,本方法可以精确地求得各阶应力奇异性的次数,并且可以很方便地应用外插法确定出对应的应力强度系数。  相似文献   

19.
与界面相交的裂纹尖端的应力奇异性分析   总被引:7,自引:1,他引:7  
为了确定与结合材料的界面相交的裂纹尖端附近的应力奇异性次数,提出了一种基于最小势能原理的一维特殊有限元法,以奇异点为原点半径r0的扇形奇异区域,可以简化为一维线性领域,即一条以代表结合材料的两个自由表面为端点的线段。对该一维线性领域作网格划分,采用三节点一维等参数二次单元。数值计算结果与已有理论解的比较表明,该方法具有很高的精度和效率,最后,利用文中给出的方法,得到了各向异性结合材料中与界面以任意角相交的裂纹尖端的奇异性次数随裂纹的变化规律。  相似文献   

20.
Anti-plane problem for a singularity interacting with interfacial anti-cracks (rigid lines) under uniform shear stress at infinity in cylindrically anisotropic composites is investigated by utilizing a complex potential technique in this paper. After obtaining the general solution for this problem, the closed solution for the interface containing one anti-crack is presented analytically. In addition, the complex potentials for a screw dislocation dipole inside matrix are obtained by the superimposing method. Expressions of stress singularities around the anti-crack tips, image forces and torques acting on the dislocation or the center of dipole are given explicitly. The results indicate that the anisotropy properties of materials may weaken the stress singularity near the anti-crack tip for the singularity being a concentrated force but enhance the one for the singularity being a screw dislocation and change the equilibrium position of screw dislocation. The presented solutions are valid for anisotropic, orthotropic or isotropic composites and can be reduced to some new or previously known results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号