首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
The heat capacities of two iron phosphates, Fe(PO3)3 and Fe2P2O7, have been measured over the temperature range from (2 to 300) K using the heat capacity option of a Quantum Design Physical Property Measurement System (PPMS). A phase transition related to magnetic ordering has been found in the heat capacity at T = 8.76 K for Fe(PO3)3 and T = 18.96 K for Fe2P2O7, which are comparable with literature values from magnetic measurements. By fitting the experimental heat capacity values, the thermodynamic functions, magnetic heat capacities, and magnetic entropies have been determined. Additionally, theoretical fits at low temperatures suggest that Fe2P2O7 has an anisotropic antiferromagnetic contribution to the heat capacity and a large linear term likely caused by oxygen vacancies. Further data fitting in a series over widened temperature regions found that this linear term exists only below 15 K and disappears gradually from (15 to 17) K.  相似文献   

2.
The metal complexes with long alkyl chains [Co(C16-terpy)3](BF4)2 (1) and [Fe(C16-terpy)2](BF4)2 (2) were synthesized and the physical properties of the complex were characterized by magnetic susceptibility, Mössbauer spectroscopy, polarizing optical microscopy, differential scanning calorimetry, and X-ray scattering, where C16-terpy is 4′-hexadecyloxy-2,2′:6′,2′′-terpyridine. Variable-temperature magnetic susceptibility measurements and/or Mössbauer studies revealed that the complex 1 exhibited unique spin transition (T1/2 = 217 K and T1/2 = 260 K) induced by structural phase transition, and the complex 2 was in the low-spin state in the temperature region of 5–400 K before the first mesophase transition. The cobalt(II) and iron(II) complexes exhibited liquid-crystal properties in the temperature range of 371–528 K and 466–556 K, respectively. After mesophase transition, the complex 1 exhibited only slight spin transition (T1/2 = 266 K and T1/2 = 279 K), and the complex 2 was in the low-spin state. The compounds with multifunction, i.e., magnetic property and liquid-crystal properties, are important in the development of molecular materials.  相似文献   

3.
The Knudsen mass-loss effusion technique was used to measure the vapour pressures at different temperatures of the following compounds: 3-phenylpropionic acid, between T =  305.17 K and T =  315.17 K; 3-(2-methoxyphenyl)propionic acid, between T =  331.16 K and T =  347.16 K; 3-(4-methoxyphenyl)propionic acid, between T =  341.19 K and T =  357.15 K; 3-(3,4-dimethoxyphenyl)propionic acid, between T =  352.18 K and T =  366.16 K. From the temperature dependence of the vapour pressure, the standard molar enthalpies of sublimation ΔcrgHmowere derived by the Clausius–Clapeyron equation and the molar entropies of sublimation at equilibrium pressures were calculated. On the basis of estimated values for the heat capacity differences between the gas and the crystal phases of the studied compounds the standard, p   =  105Pa, molar enthalpies, entropies and Gibbs energies of sublimation at T =  298.15 K, were derived:  相似文献   

4.
《Polyhedron》2005,24(16-17):2497-2500
We have investigated pressure effects on a dimetallic ferrimagnet [Mn(en)]3[Cr(CN)6]2 · 4H2O (en; ethylenediamine) through the magnetic measurements using a diamond anvil cell in the pressure region up to P = 4.7 GPa. This ferrimagnetic compound has an eminent high transition temperature (Tc) of 69 K at ambient pressure in the structurally characterized molecule-based magnet system. Under hydrostatic pressure, Tc linearly increases against pressure, and exceeds 130 K at P = 4.7 GPa. The amount of the saturated moment hardly changes in the considered pressure region. This pressure experiment might become a prototype of artificial material control for the high-Tc molecule-based magnet.  相似文献   

5.
The enthalpy increment of the monazite-type solid solutions of LaPO4 with NdPO4, EuPO4 and GdPO4 has been measured by drop calorimetry at T = 1000 K. The results show deviations (excess enthalpy) from ideal behaviour that have been interpreted in terms of lattice strains resulting from the ion size effects of substitution of La3+ by Ln3+. For (La0.5Gd)0.5PO4 also the temperature dependence has been determined for T = (515 to 1565) K, indicating that the excess enthalpy decreases with increasing temperature.  相似文献   

6.
High-quality epitaxial thin films of the ferromagnetic metallic oxide SrRuO3 (SRO) were fabricated by dc-sputtering at high oxygen pressure and their structural and magnetoelectrical properties were carefully studied. The films featured a Curie temperature TC  160 K and a magnetic moment of ~0.7 μB per Ru ion. The temperature dependent magnetization could be well described by the scaling relation M(T)  (TC ? T)β with a critical exponent β = 0.53 over the entire ferromagnetic temperature range. A negative magnetoresistance, MR, on the order of a few percent was found up to room temperature. MR showed a maximum of ~4% right at TC where a kink structure of the resistivity, ρ, at zero field was flattened out on magnetic field application. This ρ contribution could be related to scattering due to orientational disorder of the Ru magnetic moments which become aligned by an external magnetic field. In addition, an equally strong MR effect, related to localization phenomena, could be observed at lower temperature. Particularly, the second MR peak at ~35 K might be related to a Fermi-liquid to non-Fermi-liquid crossover. A scaling behavior dρ/dT  |T ? TC|α was observed only above TC. Here, values for the exponent α  ?0.4 and α  ?1.4 were obtained in zero field and in a field of 9 T, respectively. The commonly observed ρ minimum, appearing at low temperatures (~3 K in the present case), is correlated with the structural disorder of the SRO films and is believed to have its origin in quantum corrections to the conductivity (QCC).  相似文献   

7.
Integral molar enthalpies of mixing were determined by drop calorimetry for (Ag-Li) liquid alloys at two temperatures (1253 and 873) K. The integral molar enthalpies of mixing are negative in the entire range of concentrations. For the mole fraction of lithium XLi = 0.5664, minimum value of the integral enthalpy of mixing of at ΔHm = −11.679 kJ/mol was observed. For (Ag-Li) liquid alloys, between T = (873 and 1253) K no temperature dependence was observed. Ab initio molecular dynamics was used to simulate liquid phase structures at T = 873 K (Li-rich side) and at T = 1250 K (Ag-rich phase) for subsequent calculation of the vibrational energy, respectively. Our measured and calculated data were compared with literature data.  相似文献   

8.
Low-temperature calorimetric measurements have been performed on DyBr3(s) in the temperature range (5.5 to 420 K ) and on DyI3(s) from T=4 K to T=420 K. The data reveal enhanced heat capacities below T=10 K, consisting of a magnetic and an electronic contribution. From the experimental data on DyBr3(s) a C0p,m (298.15 K) of (102.2±0.2) J·K−1·mol−1 and a value for {S0m (298.15 K)  S0m (5.5 K)} of (205.5±0.5) J·K−1·mol−1, have been obtained. For DyI3(s), {S0m (298.15 K)  S0m (4 K)} and C0p,m (298.15 K) have been determined as (226.9±0.5) J·K−1·mol−1 and (103.4±0.2) J·K−1·mol−1, respectively. The values for {S0m (5.5 K)  S0m (0)} for DyBr3(s) and {S0m (4 K)  S0m (0)} for DyI3(s) have been calculated, giving S0m (298.15 K)=(212.3±0.9) J·K−1·mol−1 in case of DyBr3(s) and S0m (298.15 K) =(233.1±0.7) J·K−1·mol−1 for DyI3(s). The high-temperature enthalpy increment has been measured for DyBr3(s) in the temperature range (525 to 799 K) and for DyI3(s) in the temperature range (525 to 627 K). From the results obtained and enthalpies of formation from the literature, thermodynamic functions for DyBr3(s) and DyI3(s) have been calculated from T→0 to their melting temperatures at 1151.0 K and 1251.5 K, respectively.  相似文献   

9.
The Knudsen mass-loss effusion technique was used to measure the vapour pressures at different temperatures of two crystalline ruthenium complexes: tris(1,1,1-trifluoro-2,4-pentanedionate)ruthenium(III) {Ru(tfacac)3}, between T =  350.20 K and T =  369.17 K and tris(1,1,1,5,5,5-hexafluoro-2,4-pentanedionate)ruthenium(III) {Ru(hfacac)3} between T =  299.15 K and T =  313.14 K. From the temperature dependence of the vapour pressure of the crystalline compounds, the standard molar enthalpies of sublimation were derived by the Clausius–Clapeyron equation and the molar entropies of sublimation at equilibrium pressures were calculated. By using an estimated value for the heat capacity differences between the gas and the crystal phases the standard, po =  105Pa, molar enthalpies, entropies, and Gibbs energies of sublimation at T =  298.15 K, were derived:  相似文献   

10.
The Knudsen mass-loss effusion technique was used to measure the vapour pressures of the three crystalline isomers of methylbenzamide. From the temperature dependence of the vapour pressures, the standard molar enthalpies of sublimation and the enthalpies of the intermolecular hydrogen bonds N−H⋯O were calculated. The temperature and molar enthalpy of fusion of the studied isomers were measured using differential scanning calorimetry. The values of the standard (p° = 0.1 MPa) molar enthalpy of formation in the crystalline phase, at T = 298.15 K, of the compounds studied were derived from their standard massic energies of combustion measured by static-bomb combustion calorimetry. From the experimental values, the standard molar enthalpies of formation in the gaseous phase, at T = 298.15 K, were calculated and compared with the values estimated by employing computational calculations that were conducted using different quantum chemical methods: G3(MP2), G3, and CBS-QB3. Good agreement between experimental and theoretical results is verified. The aromaticity of the compounds has been evaluated through nucleus independent chemical shifts (NICS) calculations.  相似文献   

11.
The heat capacity of olivine-type lithium iron phosphate (LiFePO4 – LFP) has been measured covering a temperature range from (2 to 773) K. Three different calorimeters were used. The Physical Property Measurement System (PPMS) from Quantum Design was applied in the range between T = (2 and 300) K, a Micro-DSC II from Setaram within the range between T = (283 and 353) K and data between T = (278 and 773) K were measured by means of a Sensys DSC (Setaram) using the Cp-by-step method. Experimental data are given with an error of (1 to 2)% above T = 20 K and up to 8% below 20 K. The data were subdivided into appropriate temperature intervals and fitted using common heat capacity functions. The low temperature results permit the calculation of standard entropies and temperature coefficients of electronic, lattice, as well as magnetic (antiferromagnetic transition at T = 49.2 K) contributions to the heat capacity. The obtained experimental values were compared to results of a recently published first principles phonon study (DFT) and to few available experimental data from the literature.  相似文献   

12.
The solubility of the binary system (LiNO3 + H2O) from T = 273.15 K to T = 333.15 K and solubility isotherms of the ternary system (LiCl + LiNO3 + H2O) were elaborately measured at T = 273.15 K and T = 323.15 K. These solubility data, as well as water activities in the binary systems from the literature, were treated by an empirically modified BET model. The isotherms of the ternary system (LiCl + LiNO3 + H2O) were reproduced and a complete phase diagram of the ternary system in the temperature range from 273.15 K to 323.15 K predicted. It is shown that the solubility data for the binary system (LiNO3 + H2O) measured in this work are slightly different from the literature data. Simulated results showed that the saturated salt solution of (2.8LiCl + LiNO3) is in equilibrium with the stable solid phase LiNO3(s) over the temperature range from 283.15 K to 323.15 K, other than the solid phases LiNO3 · 3H2O(s) and LiClH2O(s) as reported by Iyoki et al. [S. Iwasaki, Y. Kuriyama. T. Uemura, J. Chem. Eng. Data 38 (1993) 396–398].  相似文献   

13.
Heat capacities and enthalpies of phase transitions for a series of 1-alkyl-3-methylimidazolium bromide ionic liquids have been measured by adiabatic calorimetry. Thermodynamic properties of the compounds were calculated in the temperature range of (5 to 370) K. Water was found to have an additive contribution to the heat capacities of [C4mim]Br in the liquid state above Tfus and in the solid state below 160 K at w(H2O)  5 · 10−3.  相似文献   

14.
Measurements leading to the calculation of the standard thermodynamic properties for gaseous 1,2-dihydronaphthalene (Chemical Abstracts registry number [447-53-0]) are reported. Experimental methods include oxygen combustion-bomb calorimetry, adiabatic heat-capacity calorimetry, vibrating-tube densitometry, comparative ebulliometry, and inclined-piston gauge manometry. 1,2-Dihydronaphthalene decomposed significantly when heated to temperatures above T = 480 K. Consequently, the critical temperature, critical pressure, and critical density were estimated. Standard molar entropies, standard molar enthalpies, and standard molar Gibbs free energies of formation were derived at selected temperatures between T = 250 K and 500 K. The standard state is defined as the ideal gas at the pressure p = p° = 101.325 kPa. Standard entropies are compared with those calculated statistically on the basis of assigned vibrational spectra from the literature for the vapor phase. A large and near constant difference between the entropies calculated statistically and those determined calorimetrically was observed over the entire temperature range studied. Two glass-like features are observed in the heat capacity against temperature curve for the solid state, indicating that the crystals are disordered. A quantitative accounting for the entropy discrepancy is proposed based on possible molecular orientations of 1,2-dihydronaphthalene. Results are compared with experimental values reported in the literature.  相似文献   

15.
The heat capacity of a 13 nm hematite (α-Fe2O3) sample was measured from T = (1.5 to 350) K using a combination of semi-adiabatic and adiabatic calorimetry. The heat capacity was higher than that of the bulk which can be attributed to the presence of water on the surface of the nanoparticles. No anomaly was observed in the heat capacity due to the Morin transition and theoretical fits of the heat capacity below T = 15 K show a small T3 dependence (due to lattice contributions) with no T3/2 dependence. This suggests that there are no magnetic spin-wave contributions to the heat capacity of 13 nm hematite. The use of a large linear term to fit the heat capacity below T = 15 K is most likely due to superparamagnetic contributions. A small anomaly within the temperature range (4 to 8) K was attributed to the presence of uncompensated surface spins.  相似文献   

16.
The standard (p° = 0.1 MPa) molar energy of combustion in oxygen, at T = 298.15 K, of 7-hydroxycoumarin was measured by static bomb calorimetry. The value of the standard molar enthalpy of sublimation was obtained by Calvet microcalorimetry and corrected to T = 298.15 K. Combining these results, the standard molar enthalpy of formation of the compound, in the gas phase, at T = 298.15 K, has been calculated, ?(337.5 ± 2.3) kJ · mol?1. The values for the temperature of fusion, Tfusion, and for the fusion enthalpy, at T = Tfusion, are also reported.Additionally, high-level density functional theory calculations using the B3LYP hybrid exchange-correlation energy functional with extended basis sets, the MC3BB and MC3MPW methods and more accurate correlated computational techniques of the MCCM suite have been performed for the compound.The agreement between experiment and theory gives confidence to estimate the enthalpy of formation of the remaining hydroxycoumarins substituted in the benzene ring.  相似文献   

17.
The heat capacity of Ir(C5H7O2)3 has been measured by the adiabatic method within the temperature range (5 to 305) K. The thermodynamic functions (entropy, enthalpy, and reduced Gibbs free energy) at 298.15 K have been calculated using the obtained experimental heat capacity data. A connection has been found between the entropy and the volume of the elementary crystalline cell for β-acetylacetonates of some metals. The reasons for this interdependence are discussed. The values of entropies at T = 298.15 K have been calculated for all the metal acetylacetonates on which there are structural data.  相似文献   

18.
In this paper, physical properties of a high purity sample of the ionic liquid 1-propyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [PMim][NTf2], and its binary mixtures with methanol, ethanol, 1-propanol, and 2-propanol were measured at atmospheric pressure. The temperature dependence of density, refractive index and speed of sound (293.15 to 343.15) K and dynamic viscosity (298.15 to 343.15) K were studied at atmospheric pressure by conventional techniques for the pure ionic liquid. For its mixtures with alcohols, density, speed of sound, and refractive index were measured at T = 298.15 K over the whole composition range. The thermal expansion coefficient of the [PMim][NTf2] was calculated from the experimental results using an empirical equation, and values of the excess molar volume, excess refractive index, and excess molar isentropic compressibility for the binary systems at the above mentioned temperature, were calculated and fitted to the Redlich–Kister equation. The heat capacity of the pure ionic liquid at T = 298.15 K was determined using DSC.  相似文献   

19.
Calorimetric measurements performed in a wide temperature range on (NH4)3VO2F4 have shown the presence of four heat capacity anomalies at T1 = 438 K, T2 = 244 K, T3 = 210.2 K, T4 = 205.1 K associated with the first order phase transitions. In accordance with the permittivity behavior, the structural transformations are of nonferroelectric nature. Pressure dependence of the phase transition temperatures has been studied by DTA under pressure. The entropy of phase transitions is analyzed mainly in the framework of the orientational disordering of NH4+ and VO2F43? ions in a cubic phase.  相似文献   

20.
The standard (p° = 0.1 MPa) molar enthalpies of formation, in the crystalline phase, of 1-phenylpyrrole and 1-(4-methylphenyl)pyrrole, at T = 298.15 K, were derived from the standard molar energies of combustion in oxygen, measured by static-bomb combustion calorimetry. For these compounds, the standard molar enthalpies of sublimation, at T = 298.15 K, were determined from the temperature–vapour pressure dependence, obtained by the Knudsen mass-loss effusion method. Using estimated values for the heat capacity differences between the gas and the crystal phases of the studied compounds, the standard (p° = 0.1 MPa) molar enthalpies, entropies, and Gibbs energies of sublimation, at T = 298.15 K, were derived. From the experimental values, the standard molar enthalpies of formation, in the gaseous phase, at T = 298.15 K, were calculated.Additionally, the enthalpies of formation of both compounds were estimated using the composite G3(MP2)//B3LYP approach together with adequate gas-phase working reactions. There is a very good agreement between computational and experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号