首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Axial buckling of current-carrying double-nanowire-systems immersed in a longitudinal magnetic field is aimed to be explored. Each nanowire is affected by the magnetic forces resulted from the externally exerted magnetic field plus the magnetic field resulted from the passage of electric current through the adjacent nanowire. To study the problem, these forces are appropriately evaluated in terms of transverse displacements. Subsequently, the governing equations of the nanosystem are constructed using Euler–Bernoulli beam theory in conjunction with the surface elasticity theory of Gurtin and Murdoch. Using a meshless technique and assumed mode method, the critical compressive buckling load of the nanosystem is determined. In a special case, the obtained results by these two numerical methods are successfully checked. The roles of the slenderness ratio, electric current, magnetic field strength, and interwire distance on the axial buckling load and stability behavior of the nanosystem are displayed and discussed in some detail.  相似文献   

2.
《Current Applied Physics》2014,14(8):1116-1139
Free dynamic analysis of transverse motion of vertically aligned stocky ensembles of single-walled carbon nanotubes is of particular interest. A linear model is developed to take into account the van der Waals forces between adjacent SWCNTs because of their bidirectional transverse displacements. Using Hamilton's principle, the discrete equations of motion of free vibration of the nanostructure are obtained based on the nonlocal Rayleigh, Timoshenko, and higher-order beam theories. The application of such discrete models for frequency analysis of highly populated ensembles would be associated with so much computational effort. To overcome such a problem, some useful nonlocal continuous models are established. The obtained results reveal that the newly developed models can successfully capture the predicted fundamental frequencies of the discrete models. Through various numerical studies, the roles of slenderness ratio, radius of the SWCNT, small-scale parameter, population of the ensemble, and intertube distance on the fundamental flexural frequency of the nanostructure are examined and discussed. The capabilities of the proposed nonlocal continuous models in predicting flexural frequencies of the nanostructure are also addressed.  相似文献   

3.
In this paper, the effect of electric field on axial buckling of boron nitride nanotubes is investigated. For this purpose, molecular dynamics simulation and continuum mechanics are used for the first time simultaneously. In molecular dynamics simulation, the potential between boron nitride atoms is considered as Tersoff and Timoshenko beam theory is used in continuum mechanics. In this paper, buckling of zigzag and armchair boron nitride nanotubes are investigated. Here, the effects of the electric field and the length of the boron nitride nanotube on the critical load are investigated and it is shown that the effect of the electric field is different with respect to the arrangement of atoms in the boron nitride nanotubes. In fact, the electric field creates axial and torsional loads on the zigzag and armchair nanotube, respectively. Axial buckling of the zigzag nanotube is dependent on the electric field, whereas in the armchair nanotubes, the electric field changes have no effect on the axial buckling. To better understand the impact of the electric field on axial buckling, these results are compared with the continuum mechanics.  相似文献   

4.
A novel surface energy-based model is developed to examine more precisely vibrations of current-carrying double-nanowire-systems immersed in a longitudinal magnetic field. Using Biot-Savart and Lorentz laws, a more refined version of interwire interactional magnetic forces is presented. By employing Rayleigh beam theory, the equations of motion are derived. In fact, these are coupled integro-differential equations which are more accurate with respect to those of the previously developed models. For simply supported and clamped nanosystems, governing equations are analyzed via assumed mode method. The effects of interwire distance, slenderness ratio, electric current, magnetic field strength, and surface effect on the fundamental frequency are addressed carefully. The obtained results display the importance of exploiting the refined model for vibration analysis of nanosystems with low interwire distance, high electric current, and high magnetic field strength.  相似文献   

5.
Different types of actuating and sensing mechanisms are used in new micro and nanoscale devices. Therefore, a new challenge is modeling electromechanical systems that use these mechanisms. In this paper, free vibration of a magnetoelectroelastic (MEE) microbeam is investigated in order to obtain its natural frequencies and buckling loads. The beam is simply supported at both ends. External electric and magnetic potentials are applied to the beam. By using the Hamilton's principle, the governing equations and boundary conditions are derived based on the Euler–Bernoulli beam theory. The equations are solved, analytically to obtain the natural frequencies of the MEE microbeam. Furthermore, the effects of external electric and magnetic potentials on the buckling of the beam are analyzed and the critical values of the potentials are obtained. Finally, a numerical study is conducted. It is found that the natural frequency can be tuned directly by changing the magnetic and electric potentials. Additionally, a closed form solution for the normalized natural frequency is derived, and buckling loads are calculated in a numerical example.  相似文献   

6.
《Physics letters. A》2014,378(26-27):1834-1840
Free transverse vibration and instability of current-carrying nanowires immersed in a longitudinal magnetic field are of concern. On the basis of the surface elasticity theory, a model is developed to investigate the problem. The analytical expressions of dynamic transverse displacements as well as natural frequencies of the magnetically affected nanowire for carrying electric current are obtained. The influences of the surface effect, initial tensile force within the nanowire, strength of the longitudinal magnetic field, and electric current on the natural frequencies as well as dynamic displacements are examined. The obtained results reveal that the transverse stiffness of the nanostructure is enhanced by the surface effect and the initial tensile force, while electric current or longitudinal magnetic field reduces the nanowire's stiffness. The condition which leads to the dynamic instability of the nanostructure is obtained. Further, the roles of the influential parameters on its stability are inclusively discussed.  相似文献   

7.
The dynamics and instability of current-carrying slender microbeams immersed in a longitudinal magnetic field is investigated by considering the material length scale effect of the microbeam. On the basis of modified couple stress theory, a theoretical model considering the effect of Lorentz forces is developed to analyze the free vibration and possible instability of the microbeam. Using the differential quadrature method, the governing equations of motion are solved and the lowest three natural frequencies are determined. The obtained results reveal that the electric current and the longitudinal magnetic field tend to reduce the microbeam's flexural stiffness. It is therefore shown that the lowest natural frequencies would decrease with increasing magnetic field parameter. The mode shapes of the microbeam are found to be generally three-dimensional spatial in the presence of the longitudinal magnetic field. It is interesting that buckling instability would concurrently occur in the first mode or in the higher-order modes when the magnetic field parameter becomes sufficiently large.  相似文献   

8.
A lattice Boltzmann model for the Maxwell’s equations without sources is proposed by taking separate sets of distribution functions for the electric and magnetic fields and using the higher-order moment method. The higher-order moment method is based on the solution of a series of partial differential equations obtained by multi-energy-level techniques, multi-scale techniques, and Chapman–Enskog expansion, As numerical examples, some classical electromagnetic phenomena, such as the electric field and equipotential lines around an electrostatic dipole, the electric and magnetic fields around oscillating dipoles are given. These numerical results agree well with classical ones.  相似文献   

9.
S Chakraverty  Laxmi Behera 《中国物理 B》2017,26(7):74602-074602
We present the application of differential quadrature(DQ) method for the buckling analysis of nanobeams with exponentially varying stiffness based on four different beam theories of Euler-Bernoulli, Timoshenko, Reddy, and Levison.The formulation is based on the nonlocal elasticity theory of Eringen. New results are presented for the guided and simply supported guided boundary conditions. Numerical results are obtained to investigate the effects of the nonlocal parameter,length-to-height ratio, boundary condition, and nonuniform parameter on the critical buckling load parameter. It is observed that the critical buckling load decreases with increase in the nonlocal parameter while the critical buckling load parameter increases with increase in the length-to-height ratio.  相似文献   

10.
In the present work, effect of von Kàrmàn geometric nonlinearity on the vibration behavior of a single-walled boron nitride nanotube (SWBNNT) is investigated based on nonlocal piezoelasticity theory. The SWBNNT is considered as a nanobeam within the framework of Timoshenko beam (TB). Loading is composed of a temperature change and an imposed axially electric potential throughout the SWBNNT. The interactions between the SWBNNT and its surrounding elastic medium are simulated by Winkler and Pasternak foundation models. The higher order governing equations of motion are derived using Hamilton's principle and the numerical solution of equations is obtained using Differential Quadrature (DQ) method. The effects of geometric nonlinearity, elastic foundation modulus, electric potential field, temperature change and nonlocal parameter on the frequency of the SWBNNT are studied in detail.  相似文献   

11.
Spontaneous nanostructure formations on roughened and smooth silicon surface by the femtosecond laser irradiation with the repetition rate of 100 kHz were systematically studied. In addition to the widely accepted so-called coarse ripple, which has the period analogous to the wavelength of the laser beam and aligns perpendicularly to the electric field of the incident laser beam, the ripple which has the period similar to the wavelength of the incident laser beam but aligns parallel to the electric field of the laser beam was observed on the roughened surface for the lower fluence and the higher number of pulse irradiation. Furthermore, the ensemble of dots formed by the enhancement of the local electric field was found on the roughened surface. This structure is preferentially formed around the scratches aligned perpendicularly to the electric field of the laser beam. These novel nanostructures are considered to be peculiar to the femtosecond laser irradiation and open the possibilities for precise control of the spontaneous nanostructure formation by femtosecond laser irradiation.  相似文献   

12.
表面等离激元自诞生以来已有一百多年的历史,并逐渐形成了一门新的学科——表面等离激元光子学.位于金属纳米结构中的局域表面等离激元可产生非常显著的近表面电场增强,并成功应用于诸多研究领域当中,而对局域表面等离激元与外界入射光中磁场的相互作用的研究则相对较少.该研究在前期已有的研究基础之上模拟计算了金属纳米球-纳米圆盘结构间...  相似文献   

13.
A general procedure for the determination of the natural frequencies and buckling load for a set of beam system under compressive axial loading is investigated using Timoshenko and high-order shear deformation theory. It is assumed that the set beams of the system are simply supported and continuously joined by a Winkler elastic layer. The model of beam includes the effects of axial loading, shear deformation and rotary inertia. In the special case of identical beams, explicit expressions for the natural frequencies and the critical buckling load are determined using a trigonometric method. The influences of the compressive axial loading and the number of beams in the system on the natural frequencies and the critical buckling load are discussed. These results are of considerable practical interest and have wide application in engineering practice of frameworks.  相似文献   

14.
徐新河  吴夏  肖绍球  甘月红  王秉中 《物理学报》2013,62(8):84101-084101
基于麦克斯韦旋度方程, 将磁电超材料板中的电元件和磁元件分别等效为面电流和面磁流, 通过计算这些周期性面电流和面磁流在某个磁电超材料板上产生的总电场和总磁场, 获得了关于面磁流密度和面电流密度的两个方程, 进而推导出了周期性磁电超材料折射率与磁元件的磁导率、 电元件的介电常数和空间色散项之间关系的解析公式. 与传统的折射率计算公式不同, 该解析公式充分考虑到了空间色散以及磁电超材料的电元件和磁元件的相互作用. 折射率理论曲线和基于仿真实验数据的提取值曲线能很好地符合, 这说明文中推导的折射率公式能够正确地描述磁电超材料的负折射特性. 本文的结果将为分析电磁元件之间的相互作用以及设计负折射率符合一定要求的磁电超材料提供重要的理论参考. 关键词: 磁电超材料 周期性结构 负折射率  相似文献   

15.
In this paper we introduce gravitomagnetic field equations into the investigation of gravitomagnetic effects on a superconductor. We point out that in the absence of an applied magnetic field, an applied gravitomagnetic field will induce twin currents, gravitational and electric supercurrents. The latter will create a magnetic field. The slightly modified Josephson, London, and London-type gravitomagnetic equations are obtained. Some applications of these equations are discussed.  相似文献   

16.
Issuing from a geometry with nonmetricity and torsion we build up a generalized classical electrodynamics. This geometrically founded theory is coordinate covariant, as well as gauge covariant in the Weyl sense. Photons having arbitrary mass, intrinsic magnetic currents, (magnetic monopoles), and electric currents exist in this framework. The field equations, and the equations of motion of charged (either electrically or magnetically) particles are derived from an action principle. It is shown that the interaction between magnetic monopoles is transmitted by massive photons. On the other hand, the photon is massive only in the presence of magnetic currents. We obtained a static spherically symmetric solution, describing either the Reissner-Nordstrom metric of an electric monopole, or the metric and field of a magnetic monopole. The latter must be massive. In the absence of torsion and in the Einstein gauge one obtains the Einstein-Maxwell theory.  相似文献   

17.
The vibration and instability of a single-walled carbon nanotube (SWCNT) under a general magnetic field are of particular interest to researchers. Using nonlocal Rayleigh beam theory and Maxwell’s equations, the dimensionless governing equations pertinent to the free vibration of a SWCNT due to a general magnetic field were derived. The effects of the longitudinal and transverse magnetic fields on the longitudinal and flexural frequencies as well as their corresponding phase velocities were addressed and are discussed below. The critical transverse magnetic field (CTMF) associated with the lateral buckling of the SWCNT was obtained. The obtained results reveal that the CTMF increases with the longitudinally induced magnetic field. Further, its value decreases as the effect of the small-scale parameter increases.  相似文献   

18.
In this work, analysis of the human body exposed to high voltage electric and magnetic fields is presented. The distribution of the electric field is obtained by using Laplace's equation. This relates the surface charge induced on the body to the potential in a reciprocal Laplace problem, which is then calculated by charge simulation method coupled with genetic algorithms to determine the appropriate arrangement of simulating charges inside the human body. The magnetic field intensity along the vertical center line of the human is calculated. Exposure to external electric and magnetic fields at power frequency induces electric field, magnetic field and currents inside the human body. The presented model for simulating electric and magnetic fields are a three dimensional field problem and introduced different types of charges to simulate the different elementary geometrical shapes of human body. The particular strength of the charge simulation method in this application is its ability to allow a detailed representation of the shape and posture of the human body. The results have been assessed through comparison induced current, electric field, magnetic field and there distribution over the body surface, as estimated in other experimental and computational work.  相似文献   

19.
An efficient numerical method based on the surface integral equations is introduced to simulate the scattering of Gaussian beam by complex particles that consist of an arbitrarily shaped host particle and multiple internal inclusions of arbitrary shape. In particular, the incident focused Gaussian beam is described by the Davis fifth-order approximate expressions in combination with rotation defined by Euler angles. The established surface integral equations are discretized with the method of moments, where the unknown equivalent electric and magnetic currents induced on the surfaces of the host particle and the internal inclusions are expanded using the Rao–Wilton–Glisson (RWG) basis functions. The resultant matrix equations are solved by using the parallel conjugate gradient method. The proposed numerical method is validated and its capability illustrated in several characteristic examples.  相似文献   

20.
A finite element model is developed for the stability analysis of a Timoshenko beam resting on an elastic foundation and subjected to periodic axial loads. The effect of an elastic foundation on the natural frequencies and static buckling loads of hinged-hinged and fixed-free Timoshenko beams is investigated. The results obtained for a Bernoulli-Euler beam which is a special case of the present analysis show excellent agreement with the available results obtained by other analytical methods. The regions of dynamic instability are determined for different values of the elastic foundation constant. As the elastic foundation constant increases the regions of dynamic instability are shifted away from the vertical axis and the width of these regions is decreased, thus making the beam less sensitive to periodic forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号