首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper analyses the material instability of fully saturated multiphase porous media. On account of the fact that anisotropic mechanical behaviours are widely observed in saturated and partially saturated geomaterials, the anisotropic constitutive model developed by Rudnicki for geomaterials is used to model the anisotropic mechanical behaviour of the solid skeleton of saturated porous geomaterials in axisymmetric compression test. The inertial coupling effect between solid skeleton and pore fluid is also taken into account in dynamic cases. Conditions for static instability (strain localisation) and dynamic instability (stationary discontinuity and flutter instability) of fully saturated porous media are derived. The critical modulus, shear band angle for strain localisation, and the bound within which flutter instability may occur are given in explicit forms. The effects of material parameters on material instability are investigated in detail by numerical computations.  相似文献   

2.
直升机旋翼/机体动稳定性研究进展   总被引:2,自引:0,他引:2  
首先对直升机旋翼/机体动不稳定性问题的种类进行了简要概述,包括旋翼挥舞/变距、变距/摆振、挥舞/摆振和挥舞/摆振/变距耦合等孤立旋翼动不稳定性问题,以及直升机地面共振和空中共振等旋翼/机体耦合动不稳定性问题,然后分别从气动力与结构的高精度数值模型、动稳定性的计算分析方法和实验模型测试3 个方面详细介绍了直升机旋翼/机体动不稳定性问题的研究现状,并着重讨论了直升机旋翼/机体动稳定性分析技术最近的主要研究方向:耦合CFD(computational fluid dynamics)/CSD(computational structuraldynamics) 的直升机旋翼气弹动稳定性分析、复合材料旋翼动稳定性分析及其材料不确定性影响、带减摆器的旋翼/机体动稳定性分析和先进直升机构型的旋翼/机体动稳定性分析,最后对直升机旋翼/机体动稳定性研究的发展趋势进行了展望.  相似文献   

3.
Based on the differential constitutive relationship of linear viscoelastic, material, a solid-liquid coupling vibration equation for viscoelastic pipe conveying fluid is derived by the D'Alembert's principle. The critical flow velocities and natural frequencies of the cantilever pipe conveying fluid with the Kelvin model (flutter instability) are calculated with the modified finite difference method in the form of the recurrence formula. The curves between the complex frequencies of the first, second and third mode and flow velocity of the pipe are plotted. On the basis of the numerical, calculation results, the dynamic behaviors and stability of the pipe are discussed. It should be pointed out that the delay time of viscoelastic material with the Kelvin model has a remarkable effect on the dynamic characteristics and stability behaviors of the cantilevered pipe conveying fluid, which is a gyroscopic non-conservative system.  相似文献   

4.
The dynamic behavior of a spherical membrane, made of Mooney material and subjected to a uniform inflating step-pressure, is studied. Its phase-planes and nondimensional radius versus time curves are plotted for different values of the material constants. The conditions for dynamic snapout instability are discussed. The relations between the static behavior of the membrane and the dynamic instability are pointed out.  相似文献   

5.
A general qualitative approach for dynamic buckling and stability of autonomous dissipative structural systems is comprehensively presented. Attention is focused on systems which under the same statically applied loading exhibit a limit point instability or an unstable branching point instability with a non-linear fundamental path. Using the total energy equation, the theory of point and periodic attractors of the basin of attraction of a stable equilibrium point, of local and global bifurcations, of the inset and outset manifolds of a saddle and of the geometry of the channel of motion, the stability of the fundamental equilibrium path and the mechanism of dynamic buckling are thoroughly discussed. This allows us to establish useful qualitative criteria leading to exact, approximate and upper/lower bound buckling estimates without integrating the highly non-linear initial-value problem. The individual and coupling effect of geometric and material non-linearities of damping and mass distribution on the dynamic buckling load are also examined. A comparison of the results of the above qualitative analysis with those obtained via numerical simulation is performed on several two- and three-degree-of-freedom models of engineering importance.  相似文献   

6.
In this paper,a statistical second-order twoscale(SSOTS) method is developed to simulate the dynamic thcrmo-mechanical performances of the statistically inhomogeneous materials.For this kind of composite material,the random distribution characteristics of particles,including the shape,size,orientation,spatial location,and volume fractions,are all considered.Firstly,the repre.sentation for the microscopic configuration of the statistically inhomogeneous materials is described.Secondly,the SSOTS formulation for the dynamic thermo-mechanical coupled problem is proposed in a constructive way,including the cell problems,effective thermal and mechanical parameters,homogenized problems,and the SSOTS formulas of the temperatures,displacements,heat flux densities and stresses.And then the algorithm procedure corresponding to the SSOTS method is brought forward.The numerical results obtained by using the SSOTS algorithm are compared with those by classical methods.In addition,the thermo-mechanical coupling effect is studied by comparing the results of coupled case with those of uncoupled case.It demonstrates that the coupling effect on the temperatures,heat flux densities,displacements,and stresses is very distinct.The results show that the SSOTS method is valid to predict the dynamic thermo-mechanical coupled performances of statistically inhomogeneous materials.  相似文献   

7.
8.
主要研究裂纹对梁结构动力特性的影响规律,进而为含裂纹梁结构状态监测提供理论依据。首先,对裂纹影响区域进行分析,建立含裂纹梁二维接触非线性有限元模型,阐明含裂纹梁具有拉压不同刚度的静力特性;其次,通过对机理模型的分析,指出拉压不同刚度会引起轴向与弯曲的耦合振动;然后,通过非线性动力学分析方法研究其动力特性,观察到含裂纹梁在冲击荷载下会产生轴向与弯曲的耦合振动现象,并指出这种轴向与弯曲耦合振动的一个重要特征是轴向振动频谱图中含有弯曲振动基频的两倍频成分;最后,通过引入非线性弹簧建立一种新颖的含裂纹梁简化动力学模型,通过与精细有限元分析对比,验证了模型的合理性。该简化动力学模型将接触非线性问题转换为材料非线性问题,避免了费时的接触非线性动力学求解过程。  相似文献   

9.
10.
11.
物质点法的理论和应用   总被引:2,自引:0,他引:2  
廉艳平  张帆  刘岩  张雄 《力学进展》2013,43(2):237-264
物质点法采用质点离散材料区域, 用背景网格计算空间导数和求解动量方程,避免了网格畸变和对流项处理, 兼具拉格朗日和欧拉算法的优势, 非常适合模拟涉及材料特大变形和断裂破碎的问题. 本文详细论述了物质点法在基本理论、算法和软件开发方面的进展, 包括广义插值物质点法、接触算法、自适应算法、并行算法、与其他算法的杂交和耦合等. 系统地总结了物质点法在超高速碰撞、冲击侵彻、爆炸、动态断裂、流固耦合、多尺度分析、颗粒材料流动和岩土失效等一系列涉及材料特大变形问题中的应用,展示了其相对于传统数值计算方法的优势.  相似文献   

12.
In some simplified 1D models, we recently studied the coupling of TEI (thermoelastic instability) and DI (dynamic instability), finding that thermal effects can render unstable the otherwise neutrally stable natural elastodynamic modes of the system, giving rise to a new family of instability which we called TEDI.Here, we study the general case of two sliding elastic half-planes, finding again a relatively weak coupling between thermal and dynamic effects, and the general family of instability TEDI class is found to modify both the otherwise separated TEI and DI classes. The growth factor, the phase velocity and the migrating speeds of the perturbations are wavelength-dependent, and it is difficult to give a complete picture given the high number of materials’ parameters, and the dependence on speed, friction coefficient, and the underlying uniform pressure. However, a set of results are given for “large” and “small” mismatch of shear wave speeds in the materials, and as a function of (i) friction coefficient; (ii) sliding speed V0; (iii) wavenumber parameter γ. In the case of small mismatch, generalized Rayleigh waves exists already under frictionless conditions, the critical f for instability is zero. DI dominates over TEI typically for large wavenumbers, where the growth factors increase without limit and hence become eventually meaningless, requiring regularizations for example with rate-state dependent friction laws. TEI growth factors vice versa have a maximum at a certain wavenumber and therefore are always well posed. Larger coupling effects are noticed for two materials with large mismatch, but significantly only for sliding speeds comparable with the wave speed. In general, TEI growth factors increase with speed, whereas DI growth factors increase with speed for similar materials and decrease when the mismatch between materials is large.  相似文献   

13.
标度因数不对称度是评价光纤陀螺的一项重要指标,对其进行精确测量在高精度导航应用中具有重要意义。传统的测试方法受转台速率控制精度限制,很难精确测量小于1×10-6的不对称度。首次提出基于角速率积分的标度因数不对称度测量方法。该方法给定转台正反方向转动的角度,由固定在转台上的被测光纤陀螺进行角速率测量,并对输出值积分,从而得到标度因数不对称度。该方法基于转台位置控制,避免了转速不稳定及正反向转速不对称等因素造成的影响。还对可能引起测量误差的因素进行了分析。最后采用角速率积分法测得高精度光纤陀螺标度因数不对称度小于1×10-6。  相似文献   

14.
This paper explores the critical and post-bulging bifurcation of a cylindrical dielectric elastomer (DE) tube undergoing finite deformation under electro-mechanical coupling loading. Explicit expressions for the critical conditions of electro-mechanical bifurcation are derived by using a simplified mathematical method. The post-bifurcation path is comprehensively investigated by specifying the material model as ideal dielectric elastomer. In the post-bifurcation analysis, we analytically establish conditions for the phase coexistence of steady propagation and analyze the physical implications. We demonstrate a global instability under force or voltage control and a localized instability under volume or charge control. Cylindrical tube experiments have been carried out under electro-mechanical coupling loading to verify the theoretical predictions. Good agreements on the critical conditions as well as the post-bifurcation path are obtained. This work characterizes the bifurcation mechanism of rubber-like materials under complex coupling loading.  相似文献   

15.
The shear rheology of a binary polymer blend exhibiting a lower critical solution temperature (LCST) phase diagram and a small dynamic asymmetry (difference of glass transition temperatures between its constituents) has been investigated in the vicinity of phase separation; it is a mixture of a random copolymer of styrene and maleic anhydrite and poly(methyl methacrylate). In the linear viscoelastic regime, the material functions are sensitive to phase separation, and the effects of critical concentration fluctuations, which dominate the mechanical response, are quantified, yielding both the binodal and spinodal curves. The weak dynamic asymmetry is apparently responsible for the reduced magnitude of the observed effects, compared to blends exhibiting much larger contrast in glass transition; therefore, this property affects to some degree the accuracy of the rheologically determined phase diagram. The steady shear properties are weakly sensitive to phase separation, and suggest that shear-induced demixing may be possible. They also indicate the importance of the amount of strain energy introduced to the blend in controlling the effects of flow on phase behavior.This investigation demonstrates that the universal effects of concentration fluctuations can be detected in LCST binary polymer blends, provided that some dynamic asymmetry exists, and further they can be quantified in order to characterize the interplay between rheology and thermodynamics of these systems.Dedicated to the memory of Professor Tasos C. Papanastasiou  相似文献   

16.
Ravve  I.  Gottlieb  O.  Yarnitzky  Y. 《Nonlinear dynamics》1997,13(4):373-394
In this work, we investigate the nonlinear dynamics and stability of a machine tool traveling joint. The dynamical system considered includes contacting elements of a lathe joint and the cutting process where the onset of instability is governed by mode coupling. The equilibrium equations of the dynamical system yield a unique fixed point that can change its stability via a Hopf bifurcation. The unstable domain is primarily governed by the cutting tool location, the contact stiffness of the joint and the depth of material to be removed. Self excited vibrations due to a mode coupling instability evolve around the unstable fixed point and one or more limit cycles may coexist in the statically unstable domain. Stability and accuracy of the approximate analytical solutions are analyzed by applying Floquet analysis. Perturbation of the dynamical system with weak periodic excitation results with periodic and aperiodic solutions.  相似文献   

17.
In mechanics, viscoelasticity was the first field of applications in studying geomaterials. Further possibilities arise in spatial non-locality. Non-local materials were already studied in the 1960s by several authors as a part of continuum mechanics and are still in focus of interest because of the rising importance of materials with internal micro- and nano-structure. When material instability gained more interest, non-local behavior appeared in a different aspect. The problem was concerned to numerical analysis, because then instability zones exhibited singular properties for local constitutive equations. In dynamic stability analysis, mathematical aspects of non-locality were studied by using the theory of dynamic systems. There the basic set of equations describing the behavior of continua was transformed to an abstract dynamic system consisting of differential operators acting on the perturbation field variables. Such functions should satisfy homogeneous boundary conditions and act as indicators of stability of a selected state of the body under consideration. Dynamic systems approach results in conditions for cases, when the differential operators have critical eigenvalues of zero real parts (dynamic stability or instability conditions). When the critical eigenvalues have non-trivial eigenspace, the way of loss of stability is classified as a typical (or generic) bifurcation. Our experiences show that material non-locality and the generic nature of bifurcation at instability are connected, and the basic functions of the non-trivial eigenspace can be used to determine internal length quantities of non-local mechanics. Fractional calculus is already successfully used in thermo-elasticity. In the paper, non-locality is introduced via fractional strain into the constitutive relations of various conventional types. Then, by defining dynamic systems, stability and bifurcation are studied for states of thermo-mechanical solids. Stability conditions and genericity conditions are presented for constitutive relations under consideration.  相似文献   

18.
本文对一类中心刚体-柔性梁系统在大范围转动下的刚柔耦合动力学问题进行了研究. 柔性梁为功能梯度材料(functionally graded materials, FGM)楔形变截面梁,材料体积分数在梁轴向呈幂律分布变化. 以弧长坐标来描述柔性FGM梁的几何位移关系,分别使用倾角和拉伸应变变量描述柔性梁的横向弯曲和纵向拉伸变形,并计及剪切效应. 采用假设模态法离散变形场,运用第二类拉格朗日方程进行方程推导,得到系统考虑剪切效应的刚柔耦合动力学模型. 基于全新的刚柔耦合动力学建模理论,研究不同轴向材料梯度分布的FGM楔形梁,通过数值仿真计算,分析讨论不同的转速、梯度分布规律以及变截面参数对系统动力学特性的影响. 结果表明,剪切效应对大高跨比的FGM楔形梁的变形影响较为明显,不容忽略;材料梯度分布规律和截面参数的选取均会对旋转FGM楔形梁的动力学响应和频率产生较大影响. 本文提出的考虑剪切效应的倾角刚柔耦合动力学模型是对以往非剪切模型的进一步完善,可应用于工程中的 Timoshenko梁结构的动力学问题求解.   相似文献   

19.
In this paper, the dynamic stability of laminated hybrid composite plates subjected to periodic uniaxial stress and bending stress is studied. The governing equations of motion of Mathieu-type are established by using the Galerkin method with reduced eigenfunctions transforms. Based on Bolotin's method the regions of dynamic instability of laminated hybrid composite plates are determined by solving the eigenvalue problems. The effects of layer thickness ratio, layer number, core material and load parameter on the dynamic instability of laminated hybrid composite plates are investigated and discussed.  相似文献   

20.
Summary  The dynamic response of an interface crack between two dissimilar piezoelectric layers subjected to mechanical and electrical impacts is investigated under the boundary condition of electrical insulation on the crack surface by using the integral transform and the Cauchy singular integral equation methods. The dynamic stress intensity factors, the dynamic electrical displacement intensity factor, and the dynamic energy release rate (DERR) are determined. The numerical calculation of the mode-I plane problem indicates that the DERR is more liable to be the token of the crack growth when an electrical load is applied. The dynamic response shows a significant dependence on the loading mode, the material combination parameters as well as the crack configuration. Under a given loading mode and a specified crack configuration, the DERR of an interface crack between piezoelectric media may be decreased or increased by adjusting the material combination parameters. It is also found that the intrinsic mechanical-electrical coupling plays a more significant role in the dynamic fracture response of in-plane problems than that in anti-plane problems. Received 4 September 2001; accepted for publication 23 July 2002 The work was supported by the National Natural Science Foundation under Grant Number 19891180, the Fundamental Research Foundation of Tsinghua University, and the Education Ministry of China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号