首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In this work, the mean activity coefficients of MgCl2 in pure water and (glucose + water) mixture solvent were determined using a galvanic cell without liquid junction potential of type: (Mg2+ + ISE)|MgCl2 (m), glucose (wt.%), H2O (100 wt.%)|AgCl|Ag. The measurements were performed at T = 298.15 K. Total ionic strengths were from (0.0010 to 6.0000) mol · kg−1. The various (glucose + water) mixed solvents contained (0, 10, 20, 30 and 40)% mass fractions percentage of glucose respectively. The mean activity coefficients measured were correlated with Pitzer ion interaction model and the Pitzer adjustable parameters were determined. Then these parameters were used to calculate the thermodynamics properties for under investigated system. The results showed that Pitzer ion interaction model can satisfactory describe the investigated system. The modified three-characteristic-parameter correlation (TCPC) model was applied to correlate the experimental activity coefficient data for under investigation electrolyte system, too.  相似文献   

3.
A complete critical evaluation of all available phase diagram and thermodynamic data has been performed for all condensed phases and relevant gaseous species of the (NaCl + KCl + MgCl2 + CaCl2 + ZnCl2) system, and optimized model parameters have been found. The (NaCl + KCl + MgCl2 + CaCl2) subsystem has been critically evaluated in a previous article. The model parameters obtained for the binary and ternary subsystems can be used to predict thermodynamic properties and phase equilibria for the multicomponent system. The Modified Quasichemical Model for short-range ordering was used for the molten salt phase.  相似文献   

4.
The water activities of aqueous electrolyte mixture (NaCl + KCl + LiCl + H2O) were experimentally determined at T = 298.15 K by the hygrometric method at total ionic-strength from 0.4 mol · kg−1 to 6 mol · kg−1 for different ionic-strength fractions y of NaCl with y = 1/3, 1/2, and 2/3. The data allow the deduction of new osmotic coefficients. The results obtained were correlated by Pitzer’s model and Dinane’s mixing rules ECA I and ECA II for calculations of the water activity in mixed aqueous electrolytes. A new Dinane–Pitzer model is proposed for the calculation of osmotic coefficients in quaternary aqueous mixtures using the newly ternary and quaternary ionic mixing parameters of this studied system. The solute activity coefficients of component in the mixture are also determined for different ionic-strength fractions y of NaCl.  相似文献   

5.
6.
7.
Phase diagram and (liquid + liquid) equilibrium (LLE) data for the (NaNO3 + polyethylene glycol 4000 (PEG 4000) + H2O) system have been determined experimentally at T = (288.15 and 308.15) K. The effects of temperature on the binodal curves and tie-lines have been studied and it was found that an increasing in temperature caused the expansion of two-phase region. The Chen-NRTL, modified Wilson and UNIQUAC models were used to correlate the experimental tie-line data. The results show that the quality of fitting is better with the UNIQUAC model.  相似文献   

8.
The thermodynamic properties of (HCl (mA) + NaCl (mB)-tert-C4H9OH + H2O) system were studied by means of e.m.f. measurements in the cell without liquid junction at constant total ionic strength I=1.00 mol · kg−1 from 278.15 K to 318.15 K. The standard electrode potential of Ag–AgCl and activity coefficient of HCl in the mixed solvents have been determined. The results show that the activity coefficient of HCl in HCl–NaCl solution still obeys Harned’s Rule and the logarithm of HCl activity coefficient, lgγA, is a linear function reciprocal of temperature at constant composition of the mixture. The standard transfer Gibbs free energy of HCl was calculated.  相似文献   

9.
10.
11.
Electrochemical measurements are done on (water + NaBr + K3PO4 + glycine) mixtures at T (298.15 and 308.15) K by using (Na+ glass) and (Br solid-state) ion selective electrodes. The mean ionic activity coefficients of NaBr are determined at five NaBr molalities (0.1, 0.3, 0.5, 0.7, and 1) in the above mixtures. The activity coefficients of glycine are evaluated from mean ionic activity coefficients of sodium bromide. The ratio of mean ionic activity coefficient of NaBr in the (water + NaBr + K3PO4 + glycine) mixtures to the mean ionic activity coefficients of NaBr at the same molalities in the (H2O + NaBr) mixtures are correlated by using a new expression.  相似文献   

12.
13.
Phase diagram and (liquid + liquid) equilibrium (LLE) results for {NaClO4 + polyethylene glycol 4000 (PEG 4000) + H2O} have been determined experimentally at T = (288.15, 298.15, and 308.15) K. The Chen-NRTL, modified Wilson and UNIQUAC models were used to correlate the values for the experimental tie-lines. The results show that the quality of fitting is better with the modified Wilson model.  相似文献   

14.
Tie-line data for ternary systems of (ethylene glycol + toluene + n-octane) at three temperatures (295.15, 301.15, and 307.15) K are reported. The compositions of liquid phases at equilibrium were determined and the results were correlated with the UNIQUAC and NRTL activity coefficient models. The partition coefficients and the selectivity factor of ethylene glycol are calculated and compared to suggest which ethylene glycol is more suitable for extracting of toluene from n-octane. The phase diagrams for the studied ternary mixtures including both the experimental and correlated tie lines are presented. From the phase diagrams and the selectivity factors, it is concluded that ethylene glycol may be used as a suitable solvent in extraction of toluene from n-octane mixtures.  相似文献   

15.
The solubility of the binary system (LiNO3 + H2O) from T = 273.15 K to T = 333.15 K and solubility isotherms of the ternary system (LiCl + LiNO3 + H2O) were elaborately measured at T = 273.15 K and T = 323.15 K. These solubility data, as well as water activities in the binary systems from the literature, were treated by an empirically modified BET model. The isotherms of the ternary system (LiCl + LiNO3 + H2O) were reproduced and a complete phase diagram of the ternary system in the temperature range from 273.15 K to 323.15 K predicted. It is shown that the solubility data for the binary system (LiNO3 + H2O) measured in this work are slightly different from the literature data. Simulated results showed that the saturated salt solution of (2.8LiCl + LiNO3) is in equilibrium with the stable solid phase LiNO3(s) over the temperature range from 283.15 K to 323.15 K, other than the solid phases LiNO3 · 3H2O(s) and LiClH2O(s) as reported by Iyoki et al. [S. Iwasaki, Y. Kuriyama. T. Uemura, J. Chem. Eng. Data 38 (1993) 396–398].  相似文献   

16.
The distillation of close boiling mixtures may be improved by adding a proper affinity solvent, and thereby creating an extractive distillation process. An example of a close boiling mixture that may be separated by extractive distillation is the mixture ethylbenzene/styrene. The ionic liquid 1-ethyl-3-methylimidazolium thiocyanate ([EMIM][SCN]) is a promising solvent to separate ethylbenzene and styrene by extractive distillation. In this study, (vapour + liquid) equilibrium data have been measured for the binary system (styrene + [EMIM][SCN]) over the pressure range of (3 to 20) kPa and binary and ternary (liquid + liquid) equilibrium data of the system (ethylbenzene + styrene + [EMIM][SCN]) at temperatures (313.2, 333.2 and 353.2) K. Due to the low solubility of ethylbenzene in [EMIM][SCN], it was not possible to measure accurately VLE data of the binary system (ethylbenzene + [EMIM][SCN]) and of the ternary system (ethylbenzene + styrene + [EMIM][SCN]) using the ebulliometer. Because previous work showed that the LLE selectivity is a good measure for the selectivity in VLE, we determined the selectivity with LLE. The selectivity of [EMIM][SCN] to styrene in LLE measurements ranges from 2.1 at high styrene raffinate purity to 2.6 at high ethylbenzene raffinate purity. The NRTL model can properly describe the experimental results. The rRMSD in temperature, pressure and mole fraction for the binary VLE data are respectively (0.1, 0.12 and 0.13)%. The rRMSD is only 0.7% in mole fraction for the LLE data.  相似文献   

17.
This paper focuses on the study of the solubility behaviour of 1-hexyl-3-methylimidazolium tetracyanoborate [HMIM][TCB] and 1-butyl-3-methylimidazolium tetracyanoborate [BMIM][TCB] in combination with methylcyclohexane and toluene as representatives for non-aromatic and aromatic components. Binary and ternary (liquid + liquid) equilibrium data were collected at three different temperatures and at atmospheric pressure (0.1 MPa). The experimental data were well-correlated with the NRTL and UNIQUAC thermodynamic models; however, the UNIQUAC model gave better predictions than the NRTL, with a root mean square error below 0.97%. The non-aromatic/aromatic selectivities of the ionic liquids make them suitable solvents to be used in extractive distillation processes.  相似文献   

18.
Metastable equilibrium solubilities and properties such as densities, conductivity, pH, refractive index, and viscosity of the solution were determined experimentally. According to the experimental data, the metastable equilibrium phase diagram was plotted. In the phase diagram, there are three invariant points, seven univariant curves, five fields of crystallization: Li2SO4 · H2O, K2SO4, Li2B4O7 · 3H2O, K2B4O7 · 4H2O, and K2SO4 · Li2SO4. The double salt K2SO4 · Li2SO4 was found in the quaternary system metastable equilibria. Lithium sulfate (Li2SO4) has the highest concentration and strong salting-out effects on other salts.Also, the relationship diagram between the properties and the ion concentration of solution was constructed. It can be seen from the relationship diagram that the equilibrium solution density values, viscosity values, and refractive index values are increased apparently with the rise of sulfate ion concentration, reaching the maximum values at eutonic point F3. Electrical conductivity values and pH values, however, fall down with the rise of ion concentration on the whole.  相似文献   

19.
Water activities in the ternary system (CaCl2 + SrCl2 + H2O) and its sub-binary system (CaCl2 + H2O) at T = 298.15 K have been elaborately measured by an isopiestic method. The data of the measured water activity were used to justify the reliability of solubility isotherms reported in the literature by correlating them with a thermodynamic Pitzer–Simonson–Clegg (PSC) model. The model parameters for representing the thermodynamic properties of the (CaCl2 + H2O) system from (0 to 11) mol  kg−1 at T = 298.15 K were determined, and the experimental water activity data in the ternary system were compared with those predicted by the parameters determined in the binary systems. Their agreement indicates that the PSC model parameters can reliably represent the properties of the ternary system. Under the assumption that the equilibrium solid phases are the pure solid phases (SrCl2  6H2O and CaCl2  6H2O)(s) or the ideal solid solution consisting of CaCl2  6H2O(s) and SrCl2  6H2O(s), the solubility isotherms were predicted and compared with experimental data from the literature. It was found that the predicted solubility isotherm agrees with experimental data over the entire concentration range at T = 298.15 K under the second assumption described above; however, it does not under the first assumption. The modeling results reveal that the solid phase in equilibrium with the aqueous solution in the ternary system is an ideal solid solution consisting of SrCl2  6H2O(s) and CaCl2  6H2O(s). Based on the theoretical calculation, the possibility of the co-saturated points between SrCl2  6H2O(s) and the solid solution (CaCl2  6H2O + SrCl2  6H2O)(s) and between CaCl2  6H2O(s) and the solid solution (CaCl2  6H2O + SrCl2  6H2O)(s), which were reported by experimental researchers, has been discussed, and the Lippann diagram of this system has been presented.  相似文献   

20.
Rate coefficients, k1, for the gas-phase OH radical reaction with the heterocyclic ether C4H4O (1,4-epoxybuta-1,3-diene, furan) were measured over the temperature range 273–353 K at 760 Torr (syn. air). Experiments were performed using: (i) the photochemical smog chamber THALAMOS (thermally regulated atmospheric simulation chamber, IMT NE, Douai-France) equipped with Fourier Transform Infrared (FTIR) and Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) detection methods and (ii) a photochemical reactor coupled with FTIR spectroscopy (PCR, University of Crete, Greece). k1(273–353 K) was measured using a relative rate (RR) method, in which the loss of furan was measured relative to the loss of reference compounds with well-established OH reaction rate coefficients. k1(273–353 K) was found to be well represented by the Arrhenius expression (1.30 ± 0.12) × 10−11 exp[(336 ± 20)/T] cm3 molecule−1 s−1, with k1(296 K) measured to be (4.07 ± 0.32) × 10−11 cm3 molecule−1 s−1. The k1(296 K) and pre-exponential quoted error limits are 2σ and include estimated systematic errors in the reference rate coefficients. The observed negative temperature dependence is consistent with a reaction mechanism involving the OH radical association to a furan double bond. Quantum mechanical molecular calculations show that OH addition to the α-carbon (ΔHr(296 K) = −121.5 kJ mol−1) is thermochemically favored over the β-carbon (ΔHr(296 K) = −52.9 kJ mol−1) addition. The OH-furan adduct was found to be stable over the temperature range of the present measurements. Maleic anhydride (C4H2O3) was identified as a minor reaction product, 3% lower-limit yield, demonstrating a non-ring-opening active reaction channel. The present results are critically compared with results from previous studies of the OH + furan reaction rate coefficient. The infrared spectrum of furan was measured as part of this study and its estimated climate metrics are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号