首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Bismuth vanadates (BiVO4) with various crystal structures (tetragonal scheelite, monoclinic scheelite, and tetragonal zircon) and morphologies (sphere-, nanosheet-, dendrite-, and flower-like) were controllably fabricated by using a mild additive-free hydrothermal treatment process under the different preparation conditions. The crystal structures, morphologies, and photophysical properties of the products were well-characterized. Subsequently, their UV- as well as visible-light photocatalytic performance was evaluated via dyes rhodamine B (RB) and methylene blue (MB) degradation. Special attention was paid to evaluate the correlation of the reactivity with crystal structure, morphology, and electronic structure of as-prepared BiVO4 samples.  相似文献   

2.
In this study, two different chemical solution methods were used to synthesize Zinc oxide nanostructures via a simple and fast microwave assisted method. Afterwards, the photocatalytic performances of the produced ZnO powders were investigated using methylene blue (MB) photodegradation with UV lamp irradiation. The obtained ZnO nanostructures showed spherical and flower-like morphologies. The average crystallite size of the flower-like and spherical nanostructures were determined to be about 55 nm and 28 nm, respectively. X-ray diffraction (XRD), scanning electronic microscopy (SEM), Brunauer–Emmett–Teller (BET), room temperature photoluminescence (RT-PL) and UV–vis analysis were used for characterization of the synthesized ZnO powders. Using BET N2-adsorption technique, the specific surface area of the flower-like and spherical ZnO nanostructures were found to be 22.9 m2/gr and 98 m2/gr, respectively. Both morphologies show similar band gap values. Finally, our results depict that the efficiency of photocatalytic performance in the Zinc oxide nanostructures with spherical morphology is greater than that found in the flower-like Zinc oxide nanostructures as well as bulk ZnO.  相似文献   

3.
Cadmium selenide/graphene quantum dots (CdSe/GQDs) nanocatalyst with small band gap energy and a large specific surface area was produced via a facile three-step sonochemical-hydrothermal process. The features of the as-prepared CdSe, GQDs and CdSe/GQDs samples were characterized by photoluminescence spectroscopy (PL), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), Fourier transformed infrared (FT-IR), diffuse-reflectance spectrophotometer (DRS), and Brunauer–Emmett–Teller (BET) analysis. The sonocatalytic activity of the synthesized CdSe/GQDs was effectively accelerated compared with that of pure CdSe nanoparticles in degradation of methylene blue (MB). The influence of the CdSe/GQDs dosage (0.25–1.25 g/L), initial MB concentration (20–30 mg/L), initial solution pH (3–12), and ultrasonic output power (200–600 W/L) were examined on the sonocatalytic treatment of MB aqueous solutions. The degradation efficiency (DE%) of 99% attained at 1 g/L of CdSe/GQDs, 20 mg/L of MB, pH of 9, and an output power of 200 W/L at 90 min of ultrasonic irradiation. Furthermore, DE% increased with addition of K2S2O8 and H2O2 as the enhancers via producing more free radicals. However, addition of sulfate, carbonate, and chloride as radical sweeper decreased DE%. Furthermore, well-reusability of the CdSe/GQDs sonocatalyst was demonstrated for 5 successive runs and some of the sonocatalytic generated intermediates were indicated by GC–MS analysis.  相似文献   

4.
γ-Fe2O3 nanoparticles were synthesized and loaded on activated carbon. The prepared nanomaterial was characterized by field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transforms infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The γ-Fe2O3 nanoparticle-loaded activated carbon (γ-Fe2O3-NPs-AC) was used as novel adsorbent for the ultrasonic-assisted removal of methylene blue (MB) and malachite green (MG). Response surface methodology and artificial neural network were applied to model and optimize the adsorption of the MB and MG in their individual and binary solutions followed by the investigation on adsorption isotherm and kinetics. The individual effects of parameters such as pH, mass of adsorbent, ultrasonication time as well as MB and MG concentrations in addition to the effects of their possible interactions on the adsorption process were investigated. The numerical optimization revealed that the optimum adsorption (>99.5% for each dye) is obtained at 0.02 g, 15 mg L−1, 4 min and 7.0 corresponding to the adsorbent mass, each dye concentration, sonication time and pH, respectively. The Freundlich, Langmuir, Temkin and Dubinin–Radushkevich isotherms were studied. The Langmuir was found to be most applicable isotherm which predicted maximum monolayer adsorption capacities of 195.55 and 207.04 mg g−1 for the adsorption of MB and MG, respectively. The pseudo-second order model was found to be applicable for the adsorption kinetics. Blank experiments (without any adsorbent) were run to investigate the possible degradation of the dyes studied in presence of ultrasonication. No dyes degradation was observed.  相似文献   

5.
Fe3O4-graphene/ZnO@mesoporous-SiO2 (MGZ@SiO2) nanocomposites was synthesized via a simple one pot hydrothermal method. The as-obtained samples were investigated using various techniques, as follows: scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and specific surface area (BET) vibrating sample magnetometer (VSM), among others. The sonocatalytic activities of the catalysts were tested according to the oxidation for the removal of methylene blue (MB), methyl orange (MO), and rhodamine B (RhB) under ultrasonic irradiation. The optimal conditions including the irradiation time, pH, dye concentration, catalyst dosage, and ultrasonic intensity are 60 min, 11, 50 mg/L, 1.00 g/L, and 40 W/m2, respectively. The MGZ@SiO2 showed the higher enhanced sonocatalytic degradation from among the three dyes; furthermore, the sonocatalytic-degradation mechanism is discussed. This study shows that the MGZ@SiO2 can be applied as a novel-design catalyst for the removal of organic pollutants from aqueous solutions.  相似文献   

6.
《Ultrasonics sonochemistry》2014,21(6):1964-1968
Through an ultrasound assisted method, TiO2/WO3 nanoparticles were synthesized at room temperature. The XRD pattern of as-prepared TiO2/WO3 nanoparticles matches well with that of pure monoclinic WO3 and rutile TiO2 nanoparticles. TEM images show that the prepared TiO2/WO3 nanoparticles consist of mixed square and hexagonal shape particles about 8–12 nm in diameter. The photocatalytic activity of TiO2/WO3 nanoparticles was tested for the degradation of a wastewater containing methylene blue (MB) under visible light illumination. The TiO2/WO3 nanoparticles exhibits a higher degradation rate constant (6.72 × 10−4 s−1) than bare TiO2 nanoparticles (1.72 × 10−4 s−1) under similar experimental conditions.  相似文献   

7.
The photocatalytic activity of ferrihydrite Fe5O7(OH)×4H2O synthesized by homogeneous precipitation with urea and products obtained by calcinations of as-precipitated ferrihydrite at different temperatures (200–1000 °C) was studied. The microstructure and surface properties of raw precipitate and all heated samples were characterized by means of HRTEM, SEM, BET/BJH and RTG analyses. Kinetics of disappearance of 4-chlorophenol (4-CP) in aqueous solution was used as a test reaction. We have found that hematite Fe2O3 obtained at 1000 °C exhibited satisfied photocatalytic efficiency on the degradation of 4-CP.  相似文献   

8.
We construct hierarchical MnO2 nanosheets @ fiberglass nanostructures via one-pot hydrothermal method without any surfactants. The morphology and structure of MnO2-modified fiberglass composites are examined by focus ion beam scanning electron microscopy (FIB/SEM), X-Ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The birnessite-type MnO2 nanosheets are observed to grow vertically on the surface of fiberglass. Furthermore, the birnessite-type MnO2-fiberglass composites exhibit good ability for degradation of methylene blue (MB) in different pH levels. In neutral solution (pH 6.5–7.0), it achieves a high removal rate of 96.1% (2 h, at 60 °C) in the presence of H2O2; and in acidic environment (pH 1.5), 96.8% of MB solution (20 mg/L, 100 mL) is decomposed by oxidation within only 5 min. In principles, the rational design of MnO2 nanosheets-decorated fiberglass architectures demonstrated the suitability of the low-cost MnO2-modified fiberglass nanostructure for water treatment.  相似文献   

9.
Visible-light responsive monoclinic BiVO4/MWCNT nanocomposites were facilely prepared via an in situ hydrothermal method by using sodium dodecyl sulfonate (SDS) as a guiding surfactant. The as-prepared BiVO4/MWCNT nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), the Fourier transform infrared spectroscopy (FTIR) and UV–vis diffuse reflectance spectroscopy. The results showed that the hydrothermal temperature and adding SDS had significant influence on the morphology and size of BiVO4. The photocatalytic activities of BiVO4/MWCNT nanocomposites were investigated by degrading methylene blue (MB) under visible-light irradiation. Remarkable enhancement in photodecomposition of MB was observed with BiVO4/MWCNT composite compared with bare BiVO4 particles. This improvement of photocatalytic was attributed to the effective charge transfer from BiVO4 nanocrystals to MWCNT, which promoted the migration efficiency of photogenerated electron–hole. Furthermore, a possible mechanism for the photocatalytic oxidative degradation was also discussed.  相似文献   

10.
Different morphologies of monoclinic BiVO4 with smaller size were hydrothermal synthesized by simply adjusting the amount of surfactant (polyvinyl pyrrolidone PVP K30) added. The detailed field emission scanning electron microscope (FESEM) analysis revealed that the amount of PVP added could significantly affect the morphology and size of BiVO4. Their photocatalytic activities were evaluated by the decolorization of methylene blue (MB) aqueous solution under visible-light irradiation (λ > 400 nm), and the as-prepared sample with well-assembled flower-like morphology showed a much higher photocatalytic activity due to larger specific surface area and higher separation efficiency of photo-induced carriers. The relationship between the behavior of photo-induced carriers and photocatalytic activity was studied using the surface photovoltage spectroscopy (SPS) and corresponding phase spectra.  相似文献   

11.
In this research, Fe-doped TiO2 nanoparticles with various Fe concentrations (0. 0.1, 1, 5 and 10 wt%) were prepared by a sol–gel method. Then, nanoparticles were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray analysis (EDX), BET surface area, photoluminescence (PL) spectroscopy and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic activity of the nano-particles was evaluated through degradation of reactive red 198 (RR 198) under UV and visible light irradiations. XRD results revealed that all samples contained only anatase phase. DRS showed that the Fe doping in the titania induced a significant red shift of the absorption edge and then the band gap energy decreased from 3 to 2.1 eV. Photocatalytic results indicated that TiO2 had a highest photocatalytic decolorization of the RR 198 under UV irradiation whereas photocatalytic decolorization of the RR 198 under visible irradiation increased in the presence of Fe-doped TiO2 nanoparticles. Among the samples, Fe-1 wt% doped TiO2 nanoparticles showed the highest photocatalytic decolorization of RR198 under visible light irradiation.  相似文献   

12.
Bismuth oxide carbonate was synthesized from bismuth nitrate and potassium carbonate and then converted to phase pure β-Bi2O3 form by means of thermal decomposition. X-ray diffraction, HR-SEM, diffuse reflectance UV–vis and photocatalytic degradation studies were carried out on both the samples. Bi2O2CO3 exhibited a wide band gap of 3.406(5) eV while β-Bi2O3 had a lesser band gap of 2.589(3) eV. β-Bi2O3 degrades a higher amount of methyl orange because of its lesser band gap and its optimum loading was 0.1 g in 50 ml of 10 ppm solution. After photocatalytic degradation Bi2O2CO3 remains in the stable form whereas β-Bi2O3 changes to Bi2O2CO3.  相似文献   

13.
Bi4(GeO4)3 glass materials have been characterized by X-ray excited luminescence, photoluminescence and cathodo-luminescence measurements. The materials were obtained by crystallization at different temperatures and their spectroscopic parameters were compared before and after crystallization. Thermoluminescence curves recorded after electron irradiation of BGO glass behave similarly to BGO crystals, showing several peaks between 408 K (135 °C) and 610 K (337 °C). The differences between the Bi4(GeO4)3 crystals and glass materials are believed to result from the random distribution of GeO4 tetrahedra around Bi3+ ions which influences the photoluminescence and TL parameters. The CL images of glass-ceramic samples obtained by partial crystallization at 600 °C show luminescent crystalline structures, which are probably responsible for the increase in scintillation efficiency.  相似文献   

14.
The present work investigates the degradation of 4-chloro 2-aminophenol (4C2AP), a highly toxic organic compound, using ultrasonic reactors and combination of ultrasound with photolysis and ozonation for the first time. Two types of ultrasonic reactors viz. ultrasonic horn and ultrasonic bath operating at frequency of 20 kHz and 36 kHz respectively have been used in the work. The effect of initial pH, temperature and power dissipation of the ultrasonic horn on the degradation rate has been investigated. The established optimum parameters of initial pH as 6 (natural pH of the aqueous solution) and temperature as 30 ± 2 °C were then used in the degradation studies using the combined approaches. Kinetic study revealed that degradation of 4C2AP followed first order kinetics for all the treatment approaches investigated in the present work. It has been established that US + UV + O3 combined process was the most promising method giving maximum degradation of 4C2AP in both ultrasonic horn (complete removal) and bath (89.9%) with synergistic index as 1.98 and 1.29 respectively. The cavitational yield of ultrasonic bath was found to be eighteen times higher as compared to ultrasonic horn implying that configurations with higher overall areas of transducers would be better selection for large scale treatment. Overall, the work has clearly demonstrated that combined approaches could synergistically remove the toxic pollutant (4C2AP).  相似文献   

15.
Graphene@BiPO4 nanocomposite with unique rod shape morphology of BiPO4 has been successfully fabricated by the simple microwave assisted hydrothermal method. The crucial role of graphene oxide in the growth of rod shaped BiPO4 crystals has been attempted to explain in this article. Graphene oxide acts as a structure-directing and morphology-controlling agent in the nucleation and growth of nanocrystals. The as prepared organic–inorganic hybrid Graphene@BiPO4 nanocomposite photocatalyst was characterized by various techniques i.e. X-ray diffraction, scanning electron microscopy, UV–vis diffuse reflectance spectroscopy, Raman spectroscopy and photoluminescence (PL) spectroscopy. The results were promising and shown enhanced photocatalytic activity than pure BiPO4 for phenol degradation. The effect of graphene loading on the rates of photocatalytic degradation of phenol in solution is investigated. The result shows that the optimum photocatalytic activity of Graphene@BiPO4 composite at 5 wt% of graphene under visible light is almost three times higher than pure BiPO4.  相似文献   

16.
《Ultrasonics sonochemistry》2014,21(5):1770-1777
The harmful effects of wastewaters containing pesticides or insecticides on human and aquatic life impart the need of effectively treating the wastewater streams containing these contaminants. In the present work, hydrodynamic cavitation reactors have been applied for the degradation of imidacloprid with process intensification studies based on different additives and combination with other similar processes. Effect of different operating parameters viz. concentration (20–60 ppm), pressure (1–8 bar), temperature (34 °C, 39 °C and 42 °C) and initial pH (2.5–8.3) has been investigated initially using orifice plate as cavitating device. It has been observed that 23.85% degradation of imidacloprid is obtained at optimized set of operating parameters. The efficacy of different process intensifying approaches based on the use of hydrogen peroxide (20–80 ppm), Fenton’s reagent (H2O2:FeSO4 ratio as 1:1, 1:2, 2:1, 2:2, 4:1 and 4:2), advanced Fenton process (H2O2:Iron Powder ratio as 1:1, 2:1 and 4:1) and combination of Na2S2O8 and FeSO4 (FeSO4:Na2S2O8 ratio as 1:1, 1:2, 1:3 and 1:4) on the extent of degradation has been investigated. It was observed that near complete degradation of imidacloprid was achieved in all the cases at optimized values of process intensifying parameters. The time required for complete degradation of imidacloprid for approach based on hydrogen peroxide was 120 min where as for the Fenton and advance Fenton process, the required time was only 60 min. To check the effectiveness of hydrodynamic cavitation with different cavitating devices, few experiments were also performed with the help of slit venturi as a cavitating device at already optimized values of parameters. The present work has conclusively established that combined processes based on hydrodynamic cavitation can be effectively used for complete degradation of imidacloprid.  相似文献   

17.
采用无助剂、非模板的水热法可控制备Bi4Ti3O12 (BIT)晶体.通过调节反应物的pH值可以选择性地获得BIT纳米球、纳米带和纳米片.通过对不同pH值制备的样品的结构分析研究了这些不同形貌的形成机制.pH值为1制备的BIT样品在可见光下光催化活性最高.基于不同pH值制备的BIT样品的形状、尺寸和局部结构振动分析了光催化活性不同的原因.  相似文献   

18.
Photocatalytic degradation of methylene blue (MB) in water was examined using Er3+-doped TiO2 (Er–TiO2) nanorods prepared by a sol–gel derived electrospinning, calcination, and subsequent mechanical grinding. Different concentrations of Er dopant in the range of 0–1.0 mol% were synthesized to evaluate the effect of Er content on the photocatalytic activity of TiO2. Among Er3+–TiO2 catalysts, the 0.7 mol% Er3+–TiO2 catalyst showed the highest MB degradation rate. The degradation kinetic constant (k) increased from 1.0 × 10?3 min?1 to 5.1 × 10?3 min?1 with the increase of Er3+ doping from 0 to 0.7 mol%, but decreased down to 2.1 × 10?3 min?1 when Er3+ content was 1.0 mol%. It can be concluded that the degradation of MB under UV radiation was more efficient with Er3+–TiO2 catalyst than with pure TiO2. The higher activity might be attributed to the transition of 4f electrons of Er3+ and red shifts of the optical absorption edge of TiO2 by erbium ion doping.  相似文献   

19.
Copper tungstate (CuWO4) crystals were synthesized by the sonochemistry (SC) method, and then, heat treated in a conventional furnace at different temperatures for 1 h. The structural evolution, growth mechanism and photoluminescence (PL) properties of these crystals were thoroughly investigated. X-ray diffraction patterns, micro-Raman spectra and Fourier transformed infrared spectra indicated that crystals heat treated and 100 °C and 200 °C have water molecules in their lattice (copper tungstate dihydrate (CuWO4·2H2O) with monoclinic structure), when the crystals are calcinated at 300 °C have the presence of two phase (CuWO4·2H2O and CuWO4), while the others heat treated at 400 °C and 500 °C have a single CuWO4 triclinic structure. Field emission scanning electron microscopy revealed a change in the morphological features of these crystals with the increase of the heat treatment temperature. Transmission electron microscopy (TEM), high resolution-TEM images and selected area electron diffraction were employed to examine the shape, size and structure of these crystals. Ultraviolet–Visible spectra evidenced a decrease of band gap values with the increase of the temperature, which were correlated with the reduction of intermediary energy levels within the band gap. The intense photoluminescence (PL) emission was detected for the sample heat treat at 300 °C for 1 h, which have a mixture of CuWO4·2H2O and CuWO4 phases. Therefore, there is a synergic effect between the intermediary energy levels arising from these two phases during the electronic transitions responsible for PL emissions.  相似文献   

20.
Single crystals of undoped and Co-doped ZnIn2Se4 were grown by the vertical Bridgman technique. The optical energy gaps of the single crystals were investigated in the temperature range of 10–300 K from the optical absorption measurements. The indirect optical energy gaps of the single crystals were found to be 1.624 eV for undoped ZnIn2Se4 and 1.277 eV for Co-doped one at 300 K. Also, the direct optical energy gaps were given by 1.774 and 1.413 eV for undoped ZnIn2Se4 and co-doped one, respectively. The temperature dependence of the optical energy gaps was well fitted by the Varshni equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号