首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The relative hydrophobicity of the phases of several {polyethylene glycol (PEG) 8000 + sodium sulfate (Na2SO4)} aqueous two-phase systems (ATPSs), all containing 0.01 mol · L?1 sodium phosphate buffer (NaPB, pH 7.4) and increasing concentration of a salt additive, NaCl or KCl, up to 1.0 mol · L?1, was measured by the free energy of transfer of a methylene group between the phases, ΔG(CH2). The ΔG(CH2) of the systems was determined by partitioning of a homologous series of five sodium salts of dinitrophenylated (DNP) – amino acids with aliphatic side chains in three different tie-lines of each biphasic system. The relative hydrophobicity of the phases ranged from ?0.125 to ?0.183 kcal · mol?1, being the NaCl salt the one to provide the more effective changes. The results show that, within each system, there is a linear relationship between the ΔG(CH2) and the tie-line length (TLL), and biphasic systems with high salt additive concentration present the most negative ΔG(CH2) values. Therefore, the feasibility of establishing a relationship between the relative hydrophobicity of the phases in a given TLL and the ionic strength of the salt additive was investigated and a satisfactory correlation was found for each salt.  相似文献   

2.
Phase diagram and (liquid + liquid) equilibrium (LLE) results for {NaClO4 + polyethylene glycol 4000 (PEG 4000) + H2O} have been determined experimentally at T = (288.15, 298.15, and 308.15) K. The Chen-NRTL, modified Wilson and UNIQUAC models were used to correlate the values for the experimental tie-lines. The results show that the quality of fitting is better with the modified Wilson model.  相似文献   

3.
Phase diagram and (liquid + liquid) equilibrium (LLE) data for the (NaNO3 + polyethylene glycol 4000 (PEG 4000) + H2O) system have been determined experimentally at T = (288.15 and 308.15) K. The effects of temperature on the binodal curves and tie-lines have been studied and it was found that an increasing in temperature caused the expansion of two-phase region. The Chen-NRTL, modified Wilson and UNIQUAC models were used to correlate the experimental tie-line data. The results show that the quality of fitting is better with the UNIQUAC model.  相似文献   

4.
Densities of {poly(ethylene glycol) [PEG] + water} prepared with PEG average molar mass (200, 400, 600, and 1500) g · mol?1 have been measured over the entire composition range over the temperature range (283.15 to 363.15) K at 10 K intervals using a density meter based on electromagnetically-induced oscillations of a U-shaped glass tube and an inbuilt Peltier thermostat. The density versus temperature data of (PEG + water) at each composition for all PEGs were fit to a simple quadratic equation: ρ/(g · cm?3) = ρ0/(g · cm?3) + a(T/K) + b(T/K)2. Fits were observed to be satisfactory at each composition for all four (PEG + water). The excess molar volumes of (PEG + water) are observed to be negative and significant over the entire composition range for all four (PEG + water). Irrespective of the temperature, the maximum absolute excess molar volumes are observed in the water-rich region of the mixture and are found to decrease with increasing temperature. This is attributed to the presence of strong interactions within the (PEG + water). Specifically, it is proposed to be due to the H-bonding interactions between the PEG and the water molecules within the mixtures.  相似文献   

5.
Precise water activity measurements at T = 308.15 K were carried out on several binary (water + polymer) and ternary {water + polymer (1) + polymer (2)} systems using the vapour pressure osmometry (VPO) technique. Polymers were polyethylene glycol 400 (PEG400), polyethylene glycol 6000 (PEG6000), polypropylene glycol 400 (PPG400), polyvinylpyrrolidone (PVP) and dextran (DEX). The water activity results obtained were used to calculate the vapour pressure of solutions as a function of concentration and the segment-based local composition models, NRTL and Wilson, were used to correlate the experimental water activity values. It was found that, for the polymer concentration range studied here, the values of the water activity obtained for the binary (water + polymer) solutions decrease in the order DEX > PVP > PEG6000 > PPG400 > PEG400. Furthermore, water activities of solutions of each polymer in the aqueous solutions of (5, 10, 15 and 20)% (w/w) other polymers investigated were also measured at T = 308.15 K. The ability of polymer (1) in decreasing the water activity of binary {water + polymer (2)} solutions was discussed on the basis of the (polymer + water) and {polymer (1) + polymer (2)} interactions.  相似文献   

6.
The phase separation of (water + salt + polyethylene glycol 15000) systems was studied by cloud-point measurements using the particle counting method. The effect of three kinds of sulphate salt (Na2SO4, K2SO4, (NH4)2SO4) concentration, polyethylene glycol 15000 concentration, mass ratio of polymer to salt on the cloud-point temperature of these systems have been investigated. The results obtained indicate that the cloud-point temperatures decrease linearly with increase in polyethylene glycol concentrations for different salts. Also, the cloud points decrease with an increase in mass ratio of salt to polymer.  相似文献   

7.
The equilibrium solubility of sodium 2-naphthalenesulfonate in binary (sodium chloride + water), (sodium sulfate + water), and (ethanol + water) solvent mixtures was measured at elevated temperatures from (278.15 to 323.15) K using a steady-state method. With increasing temperatures, the solubility increases in aqueous solvent mixtures. The results of these results were regressed by a modified Apelblat equation. The dissolution entropy and enthalpy determined using the method of the least-squares and the change of Gibbs free energy calculated with the values of ΔdiffSo and ΔdiffHo at T = 278.15 K.  相似文献   

8.
The (liquid + liquid) equilibrium for the {polyethylene glycol dimethyl ether 2000 (PEGDME2000) + di-sodium hydrogen citrate + H2O} system was studied at T = (298.15, 308.15 and 318.15) K and atmospheric pressure (≈85 kPa). The free energies, enthalpies and entropies of cloud points were calculated in order to investigate the driving force formation of this two-phase system. To investigate the effect of molar mass of the polymer on the binodals and tie-lines, similar measurements were also made at T = 298.15 K on this two-phase system consisting of the PEGDME with molar masses of 500 and 250 g  mol−1. The effective excluded volume model was used for representation of the phase-forming ability in PEGDME systems. An empirical and the Merchuck equations with the temperature dependency were used to correlate the binodal curves. The Othmer–Tobias and Bancraft and Setschenow equations, the osmotic virial and the extended NRTL models were used to fit the tie-line data.  相似文献   

9.
(Liquid + liquid) equilibrium (LLE) data of quaternary aqueous system containing polyoxyethylene (20) cetyl ether (with abbreviation name Brij 58, non-ionic surfactant), diammonium hydrogen phosphate, and poly ethylene glycol (PEG) with three molar masses {MW = (1000, 6000, and 35,000) g · mol?1} have been determined experimentally at T = 313.15 K.Furthermore, the Flory–Huggins theory with two electrostatic terms (Debye–Hückel and Pitzer–Debye–Hückel equations) have been used to calculate the phase behavior of the quaternary systems and (surfactant + polymer) interaction parameter as well as interaction parameters between other species. Temperature dependency of the parameters of the Flory–Huggins theory has been obtained.Also an effort have been done to show that addition of PEG as well as increasing the temperature can shift the binodal curves of the ternary aqueous system containing surfactant and salt to lower mole fraction of salt. Also the effect of polymer molar mass on the binodal diagram displacement has been discussed.  相似文献   

10.
The activity coefficient data were reported for (water  +  potassium chloride  + dl -valine) at T =  298.15 K and (water  +  sodium chloride  + l -valine) at T =  308.15 K. The measurements were performed in an electrochemical cell using ion-selective electrodes. The maximum concentrations of the electrolytes and the amino acids studied were 1.0 molality and 0.4 molality, respectively. The results of the activity coefficients of dl -valine are compared with the activity coefficients of dl -valine in (water  +  sodium chloride  + dl -valine) system obtained from the previous study. The results show that the presence of an electrolyte and the nature of its cation have a significant effect on the activity coefficient of dl -valine in aqueous electrolyte solutions.  相似文献   

11.
(Liquid + liquid) equilibrium (LLE) data for the ternary mixtures of (methanol + aniline + n-octane) and (methanol + aniline + n-dodecane) at T = 298.15 K and ambient pressure are reported. The compositions of liquid phases at equilibrium were determined and the results were correlated with the UNIQUAC and NRTL activity coefficient models. The partition coefficients and the selectivity factor of methanol for the extraction of aniline from the (aniline + n-octane or n-dodecane) mixtures are calculated and compared. Based on these comparisons, the efficiency of methanol for the extraction of aniline from (aniline + n-dodecane) mixtures is higher than that for the extraction of aniline from (aniline + n-octane) mixtures. The phase diagrams for the ternary mixtures including both the experimental and correlated tie lines are presented. From the phase diagrams and the selectivity factors, it is concluded that methanol may be used as a suitable solvent in extraction of aniline from (aniline + n-octane or n-dodecane) mixtures.  相似文献   

12.
The experimental (liquid + liquid) equilibrium (LLE) properties for two ternary systems containing (N-formylmorpholine + benzene + n-hexane), (sulfolane + benzene + n-hexane) and a quaternary mixed solvent system (sulfolane + N-formylmorpholine + benzene + n-hexane) were measured at temperature ranging from (298.15 to 318.15) K and at an atmospheric pressure. The experimental distribution coefficients and selectivity factors are presented to evaluate the efficiency of the solvents for extraction of benzene from n-hexane. The LLE results obtained indicate that increasing temperature decreases selectivity for all solvents. The LLE results for the systems studied were used to obtain binary interaction parameters in the UNIQUAC model by minimizing the root mean square deviations (RMSD) between the experimental and calculated results. Using the interaction parameters obtained, the phase equilibria in the systems were calculated and plotted. The calculated compositions based on the UNIQUAC model were found to be in good agreement with the experimental values. The result of the RMSD obtained by comparing the calculated and experimental two-phase compositions is 0.0163 for (N-formylmorpholine + benzene + n-hexane) system and is 0.0120 for (sulfolane + benzene + n-hexane) system.  相似文献   

13.
A new set of molar heat capacity data for aqueous {2-amino-2-hydroxymethyl-1,3-propanediol (TRIS) + glycol} at (30 to 80) °C and different concentrations (4% to 16% by weight TRIS or 56% to 44% by weight water, in a fixed amount of glycol – 40% by weight) were gathered via reliable measurement method and are presented in this report. The glycols considered were diethylene glycol (DEG), triethylene glycol (TEG), tetraethylene glycol (T4EG), propylene glycol (PG), dipropylene glycol (DPG), and tripropylene glycol (TPG). The 198 data points gathered fit the equation, Cp = Cp,a + B1m + B2m2 + B3m3, where Cp and Cp,a are the molar heat capacities of the (TRIS + glycol + water) and (water + glycol) systems, respectively, Bi the temperature-dependent parameters, and m the mole TRIS per kilogram (glycol + water). The overall average absolute deviation (AAD) of the experimental data from the corresponding values calculated from the correlation equation was 0.07%.  相似文献   

14.
(Liquid + liquid) equilibria (LLE) data were presented for one ternary system of {water + octane + diisopropyl ether (DIPE)} and three quaternary systems of (water + 1-propanol + DIPE + octane, or methylbenzene, or heptane) at T = 298.15 K and p = 100 kPa. The experimental LLE data were correlated with the modified and extended UNIQUAC models. Distribution coefficients were derived from the experimental LLE data to evaluate the solubility behavior of components in organic and aqueous phases.  相似文献   

15.
Density ρ, viscosity η, and refractive index nD, values for (tetradecane + benzene, + toluene, + chlorobenzene, + bromobenzene, + anisole) binary mixtures over the entire range of mole fraction have been measured at temperatures (298.15, 303.15, and 308.15) K at atmospheric pressure. The speed of sound u has been measured at T = 298.15 K only. Using these data, excess molar volume VE, deviations in viscosity Δη, Lorentz–Lorenz molar refraction ΔR, speed of sound Δu, and isentropic compressibility Δks have been calculated. These results have been fitted to the Redlich and Kister polynomial equation to estimate the binary interaction parameters and standard deviations. Excess molar volumes have exhibited both positive and negative trends in many mixtures, depending upon the nature of the second component of the mixture. For the (tetradecane + chlorobenzene) binary mixture, an incipient inversion has been observed. Calculated thermodynamic quantities have been discussed in terms of intermolecular interactions between mixing components.  相似文献   

16.
(Liquid + liquid) equilibrium tie-lines were measured for one ternary system {x1H2O + x2(CH3)2CHOH + (1  x1  x2)CH3C(CH3)2OCH3} and one quaternary system {x1H2O + x2(CH3)2CHOH + x3CH3C(CH3)2OCH3 + (1  x1  x2  x3)(CH3)2CHOCH(CH3)2} at T = 298.15 K and P = 101.3 kPa. The experimental (liquid + liquid) equilibrium results were satisfactorily correlated by modified and extended UNIQUAC models both with ternary and quaternary parameters in addition to binary ones.  相似文献   

17.
Precise excess volumes of mixing measurements at T = 313.15 K are reported over the whole composition range for binary mixtures: (N,N-dimethylacetamide + water), (N,N-dimethylacetamide + methanol), (N,N-dimethylacetamide + ethanol) and for the ternary mixtures (N,N-dimethylacetamide + methanol + water) and (N,N-dimethylacetamide + ethanol + water). For all the systems, large negative deviations from ideality are observed. The binary results have been fitted using the Redlich–Kister type polynomial. The possibility of predicting the ternary results from the binary ones was examined.  相似文献   

18.
(Liquid + liquid) equilibrium (LLE) data for ternary systems: (heptane + benzene + N-formylmorpholine), (heptane + toluene + N-formylmorpholine), and (heptane + xylene + N-formylmorpholine) have been determined experimentally at temperatures ranging from 298.15 K to 353.15 K. Complete phase diagrams were obtained by determining solubility and tie-line data. Tie-line compositions were correlated by Othmer–Tobias and Bachman methods. The universal quasichemical activity coefficient (UNIQUAC) and the non-random two liquids equation (NRTL) were used to predict the phase equilibrium in the system using the interaction parameters determined from experimental data. It is found that UNIQUAC and NRTL used for LLE could provide a good correlation. Distribution coefficients, separation factors, and selectivity were evaluated for the immiscibility region.  相似文献   

19.
Isothermal (vapour + liquid) equilibria (VLE) at 313.15 K have been measured for liquid 1-propanol + dibromomethane, or + bromochloromethane or + 1,2-dichloroethane or + 1-bromo-2-chloroethane mixtures.The VLE data were reduced using the Redlich–Kister equation taking into consideration the vapour phase imperfection in terms of the 2nd molar virial coefficients. The excess molar Gibbs free energies of all the studied mixtures are positive and ranging from 794 J · mol−1 for (1-propanol + bromochloromethane) and 1052 J · mol−1 for (1-propanol + 1-bromo-2-chloroethane), at x = 0.5. The experimental results are compared with modified UNIFAC predictions.  相似文献   

20.
The excess molar volumes VmE at T=298.15 have been determined in the whole composition domain for (2-methoxyethanol + tetrahydrofuran + cyclohexane) and for the parent binary mixtures. Data on VmE are also reported for (2-ethoxyethanol + cyclohexane). All binaries showed positive VmE values, small for (methoxyethanol + tetrahydrofuran) and large for the other ones. The ternary VmE surface is always positive and exhibits a smooth trend with a maximum corresponding to the binary (2-methoxyethanol + cyclohexane). The capabilities of various models of either predicting or reproducing the ternary data have been compared. The behaviour of VmE and of the excess apparent molar volume of the components is discussed in both binary and ternary mixtures. The results suggest that hydrogen bonding decreases with alcohol dilution and increases with the tetrahydrofuran content in the ternary solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号