首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interactions between dislocations and grain boundaries play an important role in the plastic deformation of polycrystalline metals. Capturing accurately the behaviour of these internal interfaces is particularly important for applications where the relative grain boundary fraction is significant, such as ultra fine-grained metals, thin films and micro-devices. Incorporating these micro-scale interactions (which are sensitive to a number of dislocation, interface and crystallographic parameters) within a macro-scale crystal plasticity model poses a challenge. The innovative features in the present paper include (i) the formulation of a thermodynamically consistent grain boundary interface model within a microstructurally motivated strain gradient crystal plasticity framework, (ii) the presence of intra-grain slip system coupling through a microstructurally derived internal stress, (iii) the incorporation of inter-grain slip system coupling via an interface energy accounting for both the magnitude and direction of contributions to the residual defect from all slip systems in the two neighbouring grains, and (iv) the numerical implementation of the grain boundary model to directly investigate the influence of the interface constitutive parameters on plastic deformation. The model problem of a bicrystal deforming in plane strain is analysed. The influence of dissipative and energetic interface hardening, grain misorientation, asymmetry in the grain orientations and the grain size are systematically investigated. In each case, the crystal response is compared with reference calculations with grain boundaries that are either ‘microhard’ (impenetrable to dislocations) or ‘microfree’ (an infinite dislocation sink).  相似文献   

2.
We compare experimental measurements of inhomogeneous plastic deformation in a Ni bicrystal with crystal plasticity simulations. Polychromatic X-ray microdiffraction, orientation imaging microscopy and scanning electron microscopy, were used to characterize the geometrically necessary dislocation distribution of the bicrystal after uniaxial tensile deformation. Changes in the local crystallographic orientations within the sample reflect its plastic response during the tensile test. Elastic strain in both grains increases near the grain boundary. Finite element simulations were used to understand the influence of initial grain orientation and structural inhomogeneities on the geometrically necessary dislocations arrangement and distribution and to understand the underlying materials physics.  相似文献   

3.
Micromechanical models aimed at simulating deformation textures and resulting plastic anisotropy need to incorporate local plastic strain heterogeneities arising from grain interactions for better predictions. The ALAMEL model [Van Houtte, P., Li, S., Seefeldt, M., Delannay, L. 2005. Deformation texture prediction: from the Taylor model to the advanced Lamel model. Int. J. Plasticity 21, 589–624], is one of the models in which the heterogeneous nature of plastic deformation in metals is introduced by accounting for the influence of a grain boundary on the cooperative deformation of adjacent grains. This is achieved by assuming that neighbouring grains undergo heterogeneous shear rates parallel to the grain boundary. The present article focuses on understanding the plastic deformation fields near the grain boundaries and the influence of grain interaction on intra-grain deformations. Crystal Plasticity Finite Element Method (CPFEM) is employed on a periodic unit cell consisting of four grains discretised into a large number of elements. A refined study of the local variation of strain rates, both along and perpendicular to the grain boundaries permits an assessment of the assumptions made in the ALAMEL model. It is shown that the ALAMEL model imbibes the nature of plastic deformation at the grain boundaries very well. However, near triple junctions, the influence of a third grain induces severe oscillations of the stress tensor, reflecting a singularity. According to CPFEM, such singularity can lead to grain subdivision by the formation of new boundaries originating at the triple junction.  相似文献   

4.
5.
This work is an attempt to answer the question:
Is there a physically natural method of characterizing the possible interactions between the slip systems of two grains that meet at a grain boundary—a method that could form the basis for the formulation of grain-boundary conditions?
Here we give a positive answer to this question based on the notion of a Burgers vector as described by a tensor field G on the grain boundary [Gurtin, M.E., Needleman, A., 2005. Boundary conditions in small-deformation single-crystal plasticity that account for the Burgers vector. J. Mech. Phys. Solids 53, 1-31]. We show that the magnitude of G can be expressed in terms of two types of moduli: inter-grain moduli that characterize slip-system interactions between the two grains; intra-grain moduli that for each grain characterize interactions between any two slip systems of that grain.We base the theory on microscopic force balances derived using the principle of virtual power, a version of the second law in the form of a free-energy imbalance, and thermodynamically compatible constitutive relations dependent on G and its rate. The resulting microscopic force balances represent flow rules for the grain boundary; and what is most important, these flow rules account automatically—via the intra- and inter-grain moduli—for the relative misorientation of the grains and the orientation of the grain boundary relative to those grains.  相似文献   

6.
A hierarchical multi-scale model that couples a region of material described by discrete dislocation plasticity to a surrounding region described by conventional crystal plasticity is presented. The coupled model is aimed at capturing non-classical plasticity effects such as the long-range stresses associated with a density of geometrically necessary dislocations and source limited plasticity, while also accounting for plastic flow and the associated energy dissipation at much larger scales where such non-classical effects are absent. The key to the model is the treatment of the interface between the discrete and continuum regions, where continuity of tractions and displacements is maintained in an average sense and the flow of net Burgers vector is managed via “passing” of discrete dislocations. The formulation is used to analyze two plane strain problems: (i) tension of a block and (ii) crack growth under mode I loading with various sizes of the discrete dislocation plasticity region surrounding the crack tip. The computed crack growth resistance curves are nearly independent of the size of the discrete dislocation plasticity region for region sizes ranging from to . The multi-scale model can reduce the computational time for the mode I crack analysis by a factor of 14 with little or no loss of fidelity in the crack growth predictions.  相似文献   

7.
We derive a three-dimensional constitutive theory accounting for length-scale dependent internal residual stresses in crystalline materials that develop due to a non-homogeneous spatial distribution of the excess dislocation (edge and screw) density. The second-order internal stress tensor is derived using the Beltrami stress function tensor φ that is related to the Nye dislocation density tensor. The formulation is derived explicitly in a three-dimensional continuum setting for elastically isotropic materials. The internal stresses appear as additional resolved shear stresses in the crystallographic visco-plastic constitutive law for individual slip systems. Using this formulation, we investigate two boundary value problems involving single crystals under symmetric double slip. In the first problem, the response of a geometrically imperfect specimen subjected to monotonic and cyclic loading is investigated. The internal stresses affect the overall strengthening and hardening under monotonic loading, which is mediated by the severity of initial imperfections. Such imperfections are common in miniaturized specimens in the form of tapered surfaces, fillets, fabrication induced damage, etc., which may produce strong gradients in an otherwise nominally homogeneous loading condition. Under cyclic loading the asymmetry in the tensile and compressive strengths due to this internal stress is also strongly influenced by the degree of imperfection. In the second example, we consider simple shear of a single crystalline lamella from a layered specimen. The lamella exhibits strengthening with decreasing thickness and increasing lattice incompatibility with shearing direction. However, as the thickness to internal length-scale ratio becomes small the strengthening saturates due to the saturation of the internal stress.Finally, we present the extension of this approach for crystalline materials exhibiting elastic anisotropy, which essentially depends on the appropriate Green function within φ.  相似文献   

8.
Discrete dislocation simulations of two boundary value problems are used as numerical experiments to explore the extent to which the nonlocal crystal plasticity theory of Gurtin (J. Mech. Phys. Solids 50 (2002) 5) can reproduce their predictions. In one problem simple shear of a constrained strip is analyzed, while the other problem concerns a two-dimensional model composite with elastic reinforcements in a crystalline matrix subject to macroscopic shear. In the constrained layer problem, boundary layers develop that give rise to size effects. In the composite problem, the discrete dislocation solutions exhibit composite hardening that depends on the reinforcement morphology, a size dependence of the overall stress-strain response for some morphologies, and a strong Bauschinger effect on unloading. In neither problem are the qualitative features of the discrete dislocation results represented by conventional continuum crystal plasticity. The nonlocal plasticity calculations here reproduce the behavior seen in the discrete dislocation simulations in remarkable detail.  相似文献   

9.
The solutions of a boundary value problem are explored for various classes of generalised crystal plasticity models including Cosserat, strain gradient and micromorphic crystal plasticity. The considered microstructure consists of a two-phase laminate containing a purely elastic and an elasto-plastic phase undergoing single or double slip. The local distributions of plastic slip, lattice rotation and stresses are derived when the microstructure is subjected to simple shear. The arising size effects are characterised by the overall extra back stress component resulting from the action of higher order stresses, a characteristic length lc describing the size-dependent domain of material response, and by the corresponding scaling law ln as a function of microstructural length scale, l. Explicit relations for these quantities are derived and compared for the different models. The conditions at the interface between the elastic and elasto-plastic phases are shown to play a major role in the solution. A range of material parameters is shown to exist for which the Cosserat and micromorphic approaches exhibit the same behaviour. The models display in general significantly different asymptotic regimes for small microstructural length scales. Scaling power laws with the exponent continuously ranging from 0 to −2 are obtained depending on the values of the material parameters. The unusual exponent value −2 is obtained for the strain gradient plasticity model, denoted “curl Hp” in this work. These results provide guidelines for the identification of higher order material parameters of crystal plasticity models from experimental data, such as precipitate size effects in precipitate strengthened alloys.  相似文献   

10.
This paper is aimed at identifying critical microstructural parameters that cause local stress concentration due to load shedding between microstructural regions of varying strengths. This stress is viewed as one of the fundamental reasons for crack initiation in Ti-6242. A rate dependent, anisotropic, elasto-crystal plasticity based finite element model (CPFEM) for poly-phase Ti-6242 is used in this study to identify the critical variables responsible for localized stress concentration due to load shedding. The model can account for various microstructural features like grain size, orientation and misorientation distributions. Various microstructural variables, such as crystal orientation, misorientation, grain size, Schmid factor and composition of phases, are considered in a detailed parametric study. Critical combinations of these parameters that result in high stress due to load shedding are identified. Finally, load shedding in a microstructure model of polycrystalline Ti-6242 is discussed from the results of CPFEM simulations. The model is statistically equivalent with respect to features observed in OIM scans.  相似文献   

11.
Numerical simulations are used to investigate the competing grain boundary and dislocation mediated deformation mechanisms in nanocrystalline Ni with grain sizes in the range 4-32 nm. We present a 3D phase field model that tracks the evolution of individual dislocations and grain boundaries. Our model shows that the transition from Hall-Petch to inverse Hall-Petch as the grain size is reduced cannot be characterized only by the grain size, but it is also affected by the grain boundary energetics. We find that the grain size corresponding to the maximum yield stress (the transition from Hall-Petch strengthening with decreasing grain size to inverse Hall-Petch) decreases with increasing grain boundary energy. Interestingly, we find that for grain boundaries with high cohesive energy the Hall-Petch maximum is not observed for grains in the range 4-32 nm.  相似文献   

12.
Modeling the strengthening effect of grain boundaries (Hall-Petch effect) in metallic polycrystals in a physically consistent way, and without invoking arbitrary length scales, is a long-standing, unsolved problem. A two-scale method to treat predictively the interactions of large numbers of dislocations with grain boundaries has been developed, implemented, and tested. At the first scale, a standard grain-scale simulation (GSS) based on a finite element (FE) formulation makes use of recently proposed dislocation-density-based single-crystal constitutive equations (“SCCE-D”) to determine local stresses, strains, and slip magnitudes. At the second scale, a novel meso-scale simulation (MSS) redistributes the mobile part of the dislocation density within grains consistent with the plastic strain, computes the associated inter-dislocation back stress, and enforces local slip transmission criteria at grain boundaries.Compared with a standard crystal plasticity finite element (FE) model (CP-FEM), the two-scale model required only 5% more CPU time, making it suitable for practical material design. The model confers new capabilities as follows:
(1)
The two-scale method reproduced the dislocation densities predicted by analytical solutions of single pile-ups.
(2)
Two-scale simulations of 2D and 3D arrays of regular grains predicted Hall-Petch slopes for iron of 1.2 ± 0.3 MN/m3/2 and 1.5 ± 0.3 MN/m3/2, in agreement with a measured slope of 0.9 ± 0.1 MN/m3/2.
(3)
The tensile stress-strain response of coarse-grained Fe multi-crystals (9-39 grains) was predicted 2-4 times more accurately by the two-scale model as compared with CP-FEM or Taylor-type texture models.
(4)
The lattice curvature of a deformed Fe-3% Si columnar multi-crystal was predicted and measured. The measured maximum lattice curvature near grain boundaries agreed with model predictions within the experimental scatter.
  相似文献   

13.
We study an idealized bending problem where two types of size effects are present – one induced by the non-uniform (macro) deformation, the other due to the (internal) resistance at grain boundaries. Classical models are not able to capture either of the two types of size dependent behavior. A remedy is to adopt a gradient crystal plasticity formulation which allows one to study the direct influence of different microstructural properties on the material response. However, it is computationally expensive to do so for a typical engineering problem since the discretization has to be done at a sub-granular level. In this paper, a homogenization theory is proposed such that the small deformation gradient crystal plasticity framework by Cermelli and Gurtin [Cermelli, P., Gurtin, M.E., 2002. Geometrically necessary dislocations in viscoplastic single crystals and bicrystals undergoing small deformations. Int. J. Solids Struct. 39, 6281–6309] translates from the micro to macro level consistently. Microstructural properties thus propagate naturally to the macro scale and the homogenized solutions compare well with the fine scale analyses for the two limit cases – microhard and microfree conditions. Three length scale parameters, i.e. the intrinsic length scale, grain size and the foil thickness, manifest themselves in the homogenized solution, thus capturing both types of size effects. We further discuss on the interplay and competition between the two size effects.  相似文献   

14.
15.
In this work, the effect of the material microstructural interface between two materials (i.e., grain boundary in polycrystalls) is adopted into a thermodynamic-based higher order strain gradient plasticity framework. The developed grain boundary flow rule accounts for the energy storage at the grain boundary due to the dislocation pile up as well as energy dissipation caused by the dislocation transfer through the grain boundary. The theory is developed based on the decomposition of the thermodynamic conjugate forces into energetic and dissipative counterparts which provides the constitutive equations to have both energetic and dissipative gradient length scales for the grain and grain boundary. The numerical solution for the proposed framework is also presented here within the finite element context. The material parameters of the gradient framework are also calibrated using an extensive set of micro-scale experimental measurements of thin metal films over a wide range of size and temperature of the samples.  相似文献   

16.
The Armstrong–Frederick type kinematic hardening rule was invoked to capture the Bauschinger effect of the cyclic plastic deformation of a single crystal. The yield criterion and flow rule were built on individual slip systems. Material memory was introduced to describe strain range dependent cyclic hardening. The experimental results of copper single crystals were used to evaluate the cyclic plasticity model. It was found that the model was able to accurately describe the cyclic plastic deformation and properly reflect the dislocation substructure evolution. The well-known three distinctive regimes in the cyclic stress–strain curve of the copper single crystals oriented for single slip can be reproduced by using the model. The model can predict the enhanced hardening for crystals oriented for multislip, showing the model's ability to describe anisotropic cyclic plasticity. For a given loading history, the model was able to capture not only the saturated stress–strain response but also the detailed transient stress–strain evolution. The model was used to predict the cyclic plasticity under a high–low loading sequence. Both the stress–strain responses and the microstructural evolution can be appropriately described through the slip system activation.  相似文献   

17.
This paper focuses on the unification of two frequently used and apparently different strain gradient crystal plasticity frameworks: (i) the physically motivated strain gradient crystal plasticity models proposed by Evers et al. [2004a. Non-local crystal plasticity model with intrinsic SSD and GND effects. Journal of the Mechanics and Physics of Solids 52, 2379-2401; 2004b. Scale dependent crystal plasticity framework with dislocation density and grain boundary effects. International Journal of Solids and Structures 41, 5209-5230] and Bayley et al. [2006. A comparison of dislocation induced back stress formulations in strain gradient crystal plasticity. International Journal of Solids and Structure 43, 7268-7286; 2007. A three dimensional dislocation field crystal plasticity approach applied to miniaturized structures. Philosophical Magazine 87, 1361-1378] (here referred to as Evers-Bayley type models), where a physical back stress plays the most important role and which are further extended here to deal with truly large deformations, and (ii) the thermodynamically consistent strain gradient crystal plasticity model of Gurtin (2002-2008) (here referred to as the Gurtin type model), where the energetic part of a higher order micro-stress is derived from a non-standard free energy function. The energetic micro-stress vectors for the Gurtin type models are extracted from the definition of the back stresses of the improved Evers-Bayley type models. The possible defect energy forms that yield the derived physically based micro-stresses are discussed. The duality of both type of formulations is shown further by a comparison of the micro-boundary conditions. As a result, this paper provides a direct physical interpretation of the different terms present in Gurtin's model.  相似文献   

18.
Length scale parameters introduced in gradient theories of plasticity are calculated in closed form with a continuum dislocation based theory. The similarity of the governing equations in both models for the evolution of plastic deformation of a constrained thin film makes it possible to identify parameters of the gradient plasticity theory with the dislocation based model. A one-to-one identification is not possible given that gradient plasticity does not account for individual dislocations. However, by comparing the mean plastic deformation across the film thickness we find that the length scale parameter, l, introduced in the gradient plasticity theory depends on the geometry as well as material constants.  相似文献   

19.
This paper presents the uniqueness and existence conditions for a rate-independent plasticity model for single crystals under a general stress state. The model is based on multiple slips on three-dimensional slip systems. The uniqueness condition for the plastic slips in a single crystal with nonlinear hardening is derived using the implicit function theorem. The uniqueness condition is the non-singularity of a matrix defined by the Schmid tensors, the elasticity, and the hardening rates of the slip systems. When this matrix becomes singular, the limitations on the loading paths that can be accommodated by the active slip systems (i.e., the existence conditions) are also given explicitly. For the compatible loading paths, a particular solution is selected by requiring the solution vector to be orthogonal to the null space of the singular coefficient matrix. The paper also presents a fully implicit algorithm for the plasticity model. Numerical examples of an fcc copper single crystal under cyclic loadings (pure shear and uniaxial strain) are presented to demonstrate the main features of the algorithm.  相似文献   

20.
This paper is concerned with the formulation of a phenomenological model of finite elasto-plasticity valid for small elastic strains for initially isotropic polycrystalline material. As a basic we assume the multiplicative split of the deformation gradient into elastic and plastic part. A key feature of the model is the introduction of an independent field of 'elastic' rotations which eliminate the remaining geometrical nonlinearities coming from finite elasticity in the presence of small elastic strains. In contrast to micro-polar theories an evolution equation for is presented which relates to making use of a new device found by the author to perform the polar decomposition asymptotically. The model is shown to be invariant under both change of frame and rotation of the so called intermediate configuration. The corresponding equilibrium equations at frozen plastic and viscoelastic configuration constitute then a linear, elliptic system with nonconstant coefficients which makes this model amenable to a rigorous mathematical analysis. The introduced hysteresis effects within the elastic region are related to viscous elastic rotations of the grains of the polycrystal due to internal friction at the grain boundaries and constitute as such a rate dependent transient texture effect. The inclusion of work hardening will be addressed in future work. Received March 07, 2002 / Published online February 17, 2003 RID="*" ID="*"Communicated by Kolumban Hutter, Darmstadt  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号