首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorine-doped tin oxide films (SnO2:F, FTO) were deposited by atmosphere pressure chemical vapor deposition (APCVD) on Na-Ca-Si glass coated with a diffusion barrier layer of SiOxCy. The effects of post-heating time at 700 °C on the structural and electrical properties of SnO2:F films were investigated. The results showed that SnO2:F films were polycrystalline with tetragonal SnO2 structure, SnO phase was present in SnO2 film, and abnormal grain growth was observed. The element distribution in the film depth was measured with X-ray photoelectron spectroscopy (XPS) and revealed that when the heating time increased from 202 s to 262 s, the oxygen content in the surface increased from 78.63% to 83.38%. The resistivity increased from 3.13 × 10−4 for as-deposited films to 4.73 × 10−4 Ω cm when post-heated for 262 s. Hall mobility is limited by the ionized impurity scattering rather than the grain boundary scattering.  相似文献   

2.
Matrix-assisted pulsed laser deposition (PLD) allows a controlled layer-by-layer growth of polymer films. Di-octyl substituted polyfluorene (PF8) and its copolymers were deposited as thin films using matrix-assisted PLD by employing a KrF excimer laser with a fluence of 125 mJ/pulses. The optical and structural properties of these films are compared with spincoated films via Raman spectroscopy, absorption and photoluminescence. The Raman spectra of both PLD and spincoated films are similar indicating that the polymer films deposited via PLD maintain their molecular structure. Both the spincoated and the PLD grown PF8 films that were cast from toluene show the presence of the β phase. Benzothiadiazole substituted PF8 (F8BT) and butyl phenyl-substituted PF8 (PFB) PLD grown films show a slightly broader emission compared to the spincoated films, which is attributed to an enhanced intermolecular interaction in the PLD grown thin films.  相似文献   

3.
The precise control of the morphology of monolayer MoS2 is of particular importance for their potential applications and device performance. In this work, we present an experimental method to study the shape evolution of the chemical vapor deposition (CVD) grown MoS2 flakes. We observed that the morphology of monolayer MoS2 flakes transformed from truncated triangular shape to triangular shape by increasing the stoichiometric ratio of S:Mo, and consequently tailor the optical properties of MoS2 flakes. The results suggest the possibility to engineer the morphology of monolayer MoS2 by adjusting the chemical environment during growth.  相似文献   

4.
Diamond-like carbon (DLC)–MoS2 composite thin films were synthesized using a biased target ion beam deposition (BTIBD) technique in which MoS2 was produced by sputtering a MoS2 target using Ar ion beams while DLC was deposited by ion beam deposition with CH4 gas as carbon source. The structure and properties of the synthesized films were characterized by X-ray diffraction, X-ray absorption near edge structure (XANES), Raman spectroscopy, nanoindentation, ball-on-disk testing, and corrosion testing. The effect of MoS2 target bias voltage, ranging from −200 to −800 V, on the structure and properties of the DLC–MoS2 films was further investigated. The results showed that the hardness decreases from 9.1 GPa to 7 GPa, the Young?s modulus decreases from 100 GPa to 78 GPa, the coefficient of friction (COF) increases from 0.02 to 0.17, and the specific wear rate coefficient (k) increases from 5×10−7 to 5×10−6 mm3 N−1 m−1, with increasing the biasing voltage from 200 V to 800 V. Also, the corrosion resistance of the DLC–MoS2 films decreased with the raise of biasing voltage. Comparing with the pure DLC and pure MoS2 films, the DLC–MoS2 films deposited at low biasing voltages showed better tribological properties including lower COF and k in ambient air environment.  相似文献   

5.
《Current Applied Physics》2020,20(5):643-647
Various studies suggest that the performances of TMDs are largely thickness dependent. In this paper, we develop a chemical vapor deposition method to synthesis monolayer and bilayer MoS2 flakes with a solution precursor. The MoS2 phototransistors were prepared to investigate their optoelectronic performance. The MoS2 photodetectors exhibit high detectivity of 2.44 × 1011 and a fast response/recovery time of 97 ms/291 ms. The photoresponsivity of bilayer MoS2 flakes was found up to 7160 A W−1. Our research will pave a pathway to control the layer numbers of other TMDs nanostructures, expand the application of high performance 2D materials.  相似文献   

6.
In this study the structural and optical properties of lanthanum-doped BaSnO3 powder samples and thin films deposited on fused silica were investigaed using laser ablation. Under an oxygen pressure of 5×10−4 mbar, phase pure BaSnO3 films with a lattice constant of 0.417 nm and grain size of 21 nm were prepared at 630 °C. The band gap of BaSnO3 powder sample and thin films was calculated to be 3.36 eV and 3.67 eV, respectively. There was a progressive increase in conductivity for thin films of BaSnO3 doped with 0~7 at% of La. The highest conductivity, 9 Scm−1, was obtained for 7 at% La-doped BaSnO3. Carrier concentration, obtained from Burstein-Moss (B-M) shift, nearly matches the measured values except for 3 at% and 10 at% La-doped BaSnO3 thin films.  相似文献   

7.
This study reports the influence of growth conditions on the characteristics of (TiVCrZrY)N coatings prepared by reactive magnetron sputtering at various N2-to-total (N2 + Ar) flow ratio, which is RN. The crystal structures, microstructure, and mechanical properties for different RN were characterized by electron spectroscopy for chemical analysis, X-ray diffraction, atomic force microscopy, field-emission-scanning electron microscopy, transmission electron microscopy, and nanoindentation. The results indicate that the TiVCrZrY alloy and nitride coatings have hexagonal close-packed (hcp)-type and sodium chloride (NaCl)-type solid-solution structures, respectively. The voids in the coatings are eliminated and the growth of the columnar crystal structures is inhibited along with an increasing RN. As a consequence, highly packed equiaxed amorphous structures with smooth surfaces are formed. The coatings accordingly achieved a pronounce hardness of 17.5 GPa when RN = 100%.  相似文献   

8.
董艳芳  何大伟  王永生  许海腾  巩哲 《物理学报》2016,65(12):128101-128101
最近单层二硫化钼以其直接带隙的性质及在电子器件、催化、光电等领域中的潜在应用而备受关注.化学气相沉积法能够制备出高质量、大尺寸且性能优良的单层二硫化钼,但其制备工艺比较复杂.本文采用简化的化学气相沉积法在蓝宝石衬底上制备出了大尺寸的单晶二硫化钼.清洗衬底时,只需要简单的清洁,不需要用丙酮、食人鱼溶液(H_2SO_4/H_2O_2=3:1)等处理,这样既减少了操作步骤,又避免了潜在的危险.升温时直接从室温加热到生长的温度,不必分段升温,并且采用常压化学气相沉积法,不需要抽真空等过程,使得实验可以快捷方便地进行.光学显微镜、拉曼光谱和光致发光谱的结果表明,生长的二硫化钼为规则的三角形单层,边长为50μm左右,远大于机械剥离的样品.  相似文献   

9.
Boron nitride nanotubes are synthesized on Si substrate via a chemical vapor deposition technique with different growth durations. Field emission scanning electron microscopy micrographs show a clear influence of growth duration on size and morphology of the synthesized nanotubes. It reveals that the diameter of the tubes decreases and length increases with an increase in growth duration. Total diameter of the tube has been reduced up to 31% and length increased up to 30% with an increase of 20 min growth duration. As a result, morphology of nanotubes has also been changed from curve like to straight. Transmission electron microscope confirms the tubular structure of the synthesized nanotubes with an interlayer spacing of 0.34 nm that corresponds to d(002) plane of hexagonal boron nitride and its crystalline nature. Energy dispersive X-ray spectroscopy indicates the presence of magnesium particles in the synthesized samples that refers to its catalytic growth. X-ray photoelectron spectroscopy confirms the elemental compositions of the sample. Raman spectra reveal a peak shift of 5.48 cm−1 towards higher region of wavelength that corresponds to E2g mode of vibration in hexagonal boron nitride. This result also confirms the structural change in the synthesized boron nitride nanotubes with respect to the growth duration.  相似文献   

10.
ZrC/ZrN and ZrC/TiN multilayers were grown on (1 0 0) Si substrates at 300 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser. X-ray diffraction investigations showed that films were crystalline, the strain and grain size depending on the nature and pressure of the gas used during deposition. The elemental composition, analyzed by Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS), showed that films contained a low level of oxygen contamination. Simulations of the X-ray reflectivity (XRR) curves acquired from films indicated a smooth surface morphology, with roughness below 1 nm (rms) and densities very close to bulk values.Nanoindentation results showed that the ZrC/ZrN and ZrC/TiN multilayer samples exhibited hardness values between 30 and 33 GPa, slightly higher than the values of 28-30 GPa measured for pure ZrC, TiN and ZrN films.  相似文献   

11.
The antimony doped tin oxide (SnO2:Sb) (ATO) thin films were prepared by oblique angle electron beam evaporation technique. X-ray diffraction, field emission scanning electron microscopy, UV-vis-NIR spectrophotometer and four-point probe resistor were employed to characterize the structure, morphology, optical and electrical properties. The results show that oblique angle deposition ATO thin films with tilted columns structure are anisotropic. The in-plane birefringence of optical anisotropy is up to 0.035 at α = 70°, which means that it is suitable as wave plate and polarizer. The electrical anisotropy of sheet resistance shows that the sheet resistance parallel to the deposition plane is larger than that perpendicular to the deposition plane and it can be changed from 900 Ω/□ to 3500 Ω/□ for deposition angle from 40° to 85°, which means that the sheet resistance can be effectively tuned by changing the deposition angle. Additionally, the sandwich structure of SiO2 buffer layer plus normal ATO films and oblique angle deposition ATO films can reduce the resistance, which can balance the optical and electrical anisotropy. It is suggested that oblique angle deposition ATO thin films can be used as transparent conductive thin films in solar cell, anti-foggy windows and multifunctional carrier in liquid crystal display.  相似文献   

12.
InN has attracted much attention due to its optical and electrical properties that make it suitable for the fabrication of infrared optical devices and high-speed electronic devices. In this work we report on the structural properties and morphology of InN thin films grown on different substrates by radiofrequency plasma beam assisted pulsed laser deposition. Sapphire and silicon substrates were considered for the growth of these films. The influence of substrate type and growth parameters on the morphology and structural properties of the resulting InN thin films is discussed. The structural analysis of the samples was performed by means of X-ray diffraction. The morphology of the thin films was investigated through atomic force microscopy. Although growth of InN from a metallic In target using nitrogen radiofrequency plasma assisted pulsed laser deposition was achieved for all the samples, growth conditions were found to play an important role on the crystal quality of the resulting thin films.  相似文献   

13.
J. Yi  X.D. He  Y. Li 《Applied Surface Science》2007,253(17):7100-7103
SiC/SiO2 nanocomposite coating was deposited by electron beam-physical vapor deposition (EB-PVD) through depositing SiC target on pre-oxidized 316 stainless steel (SS) substrate. High melting point component C remained and covered on the surface of ingot after evaporation. When SiC ingot was reused, remaining C had an effect on the composition, hardness and emissivity of SiC/SiO2 nanocomposite coating. The composition of ingot and coating was studied by X-ray photoelectron spectroscopy (XPS). The influence of remaining C on hardness and spectral normal emissivity of SiC/SiO2 nanocomposite coating was investigated by nanoindentation and Fourier transform infrared spectrum (FTIR), respectively. The results show that remaining C has a large effect on hardness and a minor effect on spectral normal emissivity of SiC/SiO2 nanocomposite coating.  相似文献   

14.
A series of hydrogenated amorphous carbon (a-C:H) films were deposited on silicon substrates by microwave plasma chemical vapor deposition technique with a mixture of hydrogen and acetylene. The effects of flow ratio of hydrogen to acetylene on surface morphology and structure of a-C:H films were investigated using surface-enhanced Raman spectroscopy and scanning probe microscope (SPM) in the tapping AFM mode. Raman data imply a transition from graphite-like phase to diamond-like bonding configurations when the flow ratio increases. AFM measurements show that the increase in hydrogen content, to some extent, can smoothen the surface morphology and decrease the RMS roughness. Excessive hydrogen is found to cause the formation of polymeric hydrocarbon clusters in the films and reduce deposition rate.  相似文献   

15.
The present paper reports the influence of growth conditions on the characteristics of (TiVCrZrHf)N films prepared by rf reactive magnetron sputtering at various substrate temperatures. The nitrogen content is observed to decrease with increasing substrate temperature. The X-ray diffraction results indicate that all (TiVCrZrHf)N films are simple face centered cubic (FCC) structures. Initially, there is an obvious decrease followed by an increase in grain size with the increase in substrate temperature. The lower part of the microstructure has an amorphous structure. A nano grain structure (size ∼1 nm) with a random orientation is also observed above the amorphous structure. The fully dense columnar structure with an fcc crystal phase then starts to develop. Extreme hardness of around 48 GPa is obtained in the present alloy design.  相似文献   

16.
In this study, TiVCr alloy coatings were deposited on Si substrates by magnetron sputtering system at different working pressures (0.33-1 Pa). The TiVCr coatings have a composite structure with amorphous and body-centered cubic (bcc) crystal phases comprised of bundles of fine fibrous structures and V-shaped columnar structures, respectively. Compared with the amorphous zone, the crystalline zone has a denser and more compact structure. The coating microstructure became more porous as working pressure increased. Consequently, the crystal zones of the deposited coatings at 0.33 Pa obtained higher hardness (11.6 GPa) while the deposited coatings at 1 Pa achieved lower hardness (4.5 GPa).  相似文献   

17.
Ceria rare earth solid solutions are known as solid electrolyte with potential application in oxygen sensors and solid oxide fuel cells. We report the preparation of gadolinia-doped ceria, Ce0.90Gd0.10O1.95, by the conventional solid-state reaction method and the preparation of thin films from a sintered pellet of gadolinia-doped ceria by the pulsed laser deposition technique. The effect of process conditions, such as substrate temperature, oxygen partial pressure, and laser energy on microstructural properties of these films are examined using powder X-ray diffraction, scanning electron microscopy, atomic force microscopy, and Raman spectroscopy.  相似文献   

18.
In the present paper, we have reported the room temperature growth of antimony sulphide (Sb2S3) thin films by chemical bath deposition and detailed characterization of these films. The films were deposited from a chemical bath containing SbCl3 and Na2S2O3 at 27 °C. We have analysed the structure, morphology, composition and optical properties of as deposited Sb2S3 films as well as those subjected to annealing in nitrogen atmosphere or in air. As-deposited films are amorphous to X-ray diffraction (XRD). However, the diffused rings in the electron diffraction pattern revealed the existence of nanocrystalline grains in these films. XRD analysis showed that upon annealing in nitrogen atmosphere these films transformed into polycrystalline with orthorhombic structure. Also, we have observed that during heating in air, Sb2S3 first converts into orthorhombic form and then further heating results in the formation of Sb2O3 crystallites. Optical bandgap energy of as deposited and annealed films was evaluated from UV-vis absorption spectra. The values obtained were 2.57 and 1.73 eV for the as-deposited and the annealed films respectively.  相似文献   

19.
Hot filament chemical vapor deposition (CVD) technique has been used to deposit diamond films on silicon substrate. In the present study, diamond films were grown at various vol.% CH4 in H2 from 0.5% to 3.5%, at substrate temperature and pressure of 850 °C and 80 torr, respectively. Scanning electron microscopy, X-ray diffraction and Raman spectroscopy were employed to analyze the properties of deposited films. The formation of methyl radicals as a function of vol.% CH4 not only changes film morphology but also increase film growth rate. At low, intermediate and high vol.% CH4, cluster, faceted cubes and pyramidal features growth, were dominant. By increasing vol.% CH4 from 0.5% to 3.5%, as the growth rate improved from ∼0.25 μm/h to ∼2.0 μm/h. Raman studies features revealed high purity diamond films at intermediate range of vol.% CH4 and grain density increased by increasing CH4 concentration. The present study represents experimentally surface morphology, growth rate and quality of diamond films grown in hot filament CVD system at various CH4 concentrations.  相似文献   

20.
The Raman spectroscopy method was used for structural characterization of TiO2 thin films prepared by atomic layer deposition (ALD) and pulsed laser deposition (PLD) on fused silica and single-crystal silicon and sapphire substrates. Using ALD, anatase thin films were grown on silica and silicon substrates at temperatures 125–425 °C. At higher deposition temperatures, mixed anatase and rutile phases grew on these substrates. Post-growth annealing resulted in anatase-to-rutile phase transitions at 750 °C in the case of pure anatase films. The films that contained chlorine residues and were amorphous in their as-grown stage transformed into anatase phase at 400 °C and retained this phase even after annealing at 900 °C. On single crystal sapphire substrates, phase-pure rutile films were obtained by ALD at 425 °C and higher temperatures without additional annealing. Thin films that predominantly contained brookite phase were grown by PLD on silica substrates using rutile as a starting material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号