首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The structural phase transformations of the PtN compound with a 1:1 stoichiometric ratio of Pt:N were investigated using the framework of density functional theory (DFT). The full potential linearized augmented plane wave (FP-LAPW) method within the generalized gradient (PBE-GGA) and the Engel–Vosko generalized gradient (EV-GGA) approximations were used. A comparative study of the experimental and theoretical results is provided on the structural properties of zinc-blende (ZB), rock-salt (RS), cesium chloride (CsCl), wurtzite (WZ), nickel arsenide (NiAs), lead monoxide (PbO), and tungsten carbide (WC) phases. The calculated band structure using the modified version of the Becke and Johnson (mBJ) exchange potential reveals the metallic character of the PtN compound. The present study also shows that the PtN compound crystallizes in the WZ phase under ambient conditions. The theoretical transition pressures from WZ to RS, NiAs, PbO, and CsCl transformations are found to be 9.441 GPa, 7.705 GPa, 18.345 GPa and 31.9 GPa, respectively, using the PBE-GGA method.  相似文献   

2.
We study the pressure-induced phase transition of wurtzite ZnS using a constant pressure ab initio technique. A first-order phase transition into a rocksalt state at 30–35 GPa is observed in the constant pressure simulation. We also investigate the stability of wurtzite (WZ) and zinc-blende (ZB) phases from energy–volume calculations and Gibbs free energies at zero temperature and find that both structures show nearly similar equations of state and transform into a rocksalt structure around 14 GPa, in agreement with experiments. Additionally, we examine the influence of pressure on the electronic structure of the wurtzite and zinc-blende ZnS crystals and find that their band gap energies exhibit similar tendency and increase with increasing pressure. The calculated pressure coefficients and deformation potential are found to be comparable with experiments.  相似文献   

3.
Ab initio calculations are performed to investigate the structural stability, electronic, structural and mechanical properties of 4d transition metal nitrides TMN (TM=Ru, Rh, Pd) for five different crystal structures, namely NaCl, CsCl, zinc blende, NiAs and wurtzite. Among the considered structures, zinc blende structure is found to be the most stable one among all three nitrides at normal pressure. A structural phase transition from ZB to NiAs phase is predicted at a pressure of 104 GPa, 50.5 GPa and 56 GPa for RuN, RhN and PdN respectively. The electronic structure reveals that these nitrides are metallic. The calculated elastic constants indicate that these nitrides are mechanically stable at ambient condition.  相似文献   

4.
The structural, electronic and mechanical properties of alkaline earth metal oxides MO (M=Be, Mg, Ca, Sr, Ba) in the cubic (B1, B2 and B3) phases and in the wurtzite (B4) phase are investigated using density functional theory calculations as implemented in VASP code. The lattice constants, cohesive energy, bulk modulus, band structures and the density of states are computed. The calculated lattice parameters are in good agreement with the experimental and the other available theoretical results. Electronic structure reveals that all the five alkaline earth metal oxides exhibit semiconducting behavior at zero pressure. The estimated band gaps for the stable wurtzite phase of BeO is 7.2 eV and for the stable cubic NaCl phases of MgO, CaO, SrO and BaO are 4.436 eV, 4.166 eV, 4.013 eV, and 2.274 eV respectively. A pressure induced structural phase transition occurs from wurtzite (B4) to NaCl (B1) phase in BeO at 112.1 GPa and from NaCl (B1) to CsCl (B2) phase in MgO at 514.9 GPa, in CaO at 61.3 GPa, in SrO at 42 GPa and in BaO at 14.5 GPa. The elastic constants are computed at zero and elevated pressures for the B4 and B1 phases for BeO and for the B1 and B2 phases in the case of the other oxides in order to investigate their mechanical stability, anisotropy and hardness. The sound velocities and the Debye temperatures are calculated for all the oxides using the computed elastic constants.  相似文献   

5.
In this work, the pressure induced phase transition of InAs is investigated by density functional theory. The first-order phase transition of InAs from zinc-blende (ZB) to the rocksalt (RS) structure occurs at 4.9 GPa accompanies by a 26% volume collapse. It is found that the nearest In and As atoms bonded as covalent bond, but there is no strong interaction between the nearest In–In or As–As atoms. Crystal space of ZB structure is occupied by tetrahedrons (4 In–As covalent bonds) partly with many interstice, and crystal space of RS is fulfilled by close-packed octahedrons (6 In–As covalent bonds). With increasing pressure, rebuild of covalent bond due to variations of electronic structure causes phase transition from ZB to RS structure. Furthermore, directional changes of covalent bond along [100] and [110] bring evident variation of shear on the {100} and {110} planes.  相似文献   

6.
Recently, Chandra Shekar et al. (Phys. Stat. Sol. B 241(2004)2893), studied the structural stability of CeGa2 under high pressure up to ∼32 GPa and reported a structural transition from hexagonal AlB2-type to omega trigonal-type starting at ∼16 GPa with a volume collapse of ∼6%. The high-pressure omega triginal phase is found to coexist with the parent phase up to 32 GPa. In this paper, we report the results of our band structure calculations on this system as a function of reduced volume by the tight-binding linear muffin–tin orbital (TB-LMTO) method, in order to look into this structural transition and to understand it in terms of changes in its electronic structure. Our calculations indicate a structural transition at ∼30.6 GPa with a volume collapse of 3.5%, in good agreement with the experimental results. The possible mechanism of the phase transition may be due to f→d electron transfer under pressure. The theoretically calculated ground-state properties, namely the lattice parameters and the bulk modulus are also in good agreement with the experimental values.  相似文献   

7.
Based on the swarm-intelligence-based CALYPSO method the NbO, R3m and NiAs phases for ReN are predicted. The R3m phase of ReN at high pressure is firstly found. The structural, mechanical and electronic properties of ReN with the three phases are studied systematically. Moreover, it is also firstly found that pressure stimulated ReN to undergo twice phase transitions, from NbO to R3m phase at 43.3?GPa and from R3m to NiAs phase at 53.6?GPa. The three phases of ReN are verified to be mechanically stable and a promising low-compressible material at ambient conditions. According to the electron density of states and electron localization functions we have found that their structural stability and high hardness is on account of the strong covalent bonding of Re-N and N-N.  相似文献   

8.
Cd0.5Mn0.5Te is a semimagnetic semiconductor, which crystallizes in the zinc-blende structure (ZB) and exhibits a magnetic spin glass like transition at 21 K. Under pressure it shows a first-order phase transition around 2.6 GPa to the NaCl like structure. In this work, the pressure cycled method using a Paris–Edinburgh cell up to 8 GPa has been applied to Cd0.5Mn0.5Te samples in order to obtain recovered nanocrystals. The nanoparticles have been characterized by EDX and electron microscopy. The X-ray and electron diffraction results confirmed the existence of nanocrystals in the ZB phase with an average size of 7 nm. Magnetization measurements made in the range of 2–300 K at low field show that the temperature of the magnetic transition decreases when the crystallites’ size is reduced.  相似文献   

9.
The structural stability of Alkali metal hydrides AMH4 (A=Li, Na; M=B, Al) is analyzed among the various crystal structures, namely hexagonal (P63mc), tetragonal (P42/nmc), tetragonal (P-421c), tetragonal (I41/a), orthorhombic (Pnma) and monoclinic (P21/c). It is observed that, orthorhombic (Pnma) phase is the most stable structure for LiBH4, monoclinic (P21/c) for LiAlH4, tetragonal (P42/nmc) for NaBH4 and tetragonal (I41/a) for NaAlH4 at normal pressure. Pressure induced structural phase transitions are observed in LiBH4, LiAlH4, NaBH4 and NaAlH4 at the pressures of 4 GPa, 36.1 GPa, 26.5 GPa and 46 GPa respectively. The electronic structure reveals that these metal hydrides are wide band gap insulators. The calculated elastic constants indicate that these metal hydrides are mechanically stable at normal pressure.  相似文献   

10.
The structure of nanocrystalline and bulk polycrystalline ZnO were examined up to 85 GPa and 50 GPa, respectively using synchrotron X-rays and diamond anvil cells at ambient conditions. The transition from the wurtzite to the rock salt phase in the nano-ZnO takes place at 10.5 GPa; this transition pressure is 1.5 GPa higher than in bulk ZnO. A large volume collapse of about 17.5% is observed during the transition in both systems. The rocksalt phase is stable and no structural transitions are observed for both compounds at higher pressures up to the experimental limit. On decompression the rocksalt phase is found to co-exist with the wurtzite phase at ambient conditions for the nano-ZnO.  相似文献   

11.
周平  王新强  周木  夏川茴  史玲娜  胡成华 《物理学报》2013,62(8):87104-087104
采用第一性原理研究了CdS的六方纤锌矿(WZ), 立方闪锌矿(ZB) 和岩盐矿(RS)相在高压条件下的相稳定性、 相变点、电子结构以及弹性性能.WZ相与RS 相可以在相应的压强范围内稳定存在, 而ZB相不能稳定存在.压强大于2.18 GPa时, WZ相向RS相发生金属化相变.WZ相中S原子电负性大于Cd, 且电负性差值小于1.7, CdS的WZ相为共价晶体.高压作用下, S原子半径被强烈压缩, 有效核电荷增加, 对层外电子吸引能力提高, 电负性急剧增大, 导致S与Cd的电负性差值大于1.7, CdS的RS相以离子晶体存在. WZ相的C44随压强增加呈下降趋势, 导致WZ相力学不稳定, 并向RS相转变.当压强大于2.18 GPa时, RS相C11, C12随压强增加而增大, 并且C44保持稳定, 说明RS相具有良好的高压稳定性与力学性能. 关键词: 第一性原理 相变 电子结构 弹性性质  相似文献   

12.
Three of the five structures obtained from the evolutionary algorithm based structure search of Ruthenium Carbide systems in the stoichiometries RuC, Ru2C and Ru3C are relaxed at different pressures in the range 0–200 GPa and the pressure-induced variation of their structural, elastic, dynamical, electronic and thermodynamic properties as well as hardness is investigated in detail. No structural transition is present for these systems in this pressure range. RuC–Zinc blende is mechanically and dynamically unstable close to 100 GPa. RuC-Rhombohedral and Ru3C-Hexagonal retain mechanical and dynamical stability up to 200 GPa. For all three systems the electronic bands and density of states spread out with pressure and the band gap increases with pressure for the semiconducting RuC–Zinc blende. From the computed IR spectrum of RuC–Zinc blende at 50 GPa it is noted that the IR frequency increases with pressure. Using a semi-empirical model for hardness it is estimated that hardness of all three systems consistently increases with pressure. The hardness of RuC–Zinc blende increases towards the superhard regime up to the limiting pressure of its mechanical stability while that of RuC-Rhombohedral becomes 30 GPa at the pressure of 150 GPa.  相似文献   

13.
A first-principles density-functional-theory method has been used to reinvestigate the mechanical and dynamical stability of the metallic phase of AlH3 between 65 and 110 GPa. The electronic properties and phonon dynamics as a function of pressure are also explored. We find electron–phonon superconductivity in the cubic Pm-3n structure with critical temperature Tc = 37 K at 70 GPa which decreases rapidly with the increase of pressure. Further unlike a previously calculated Tc-value of 24 K at 110 GPa, we do not find any superconductivity of significance at this pressure which is consistent with experimental observation.  相似文献   

14.
The first-principle calculations based on spin-polarized density functional theory were performed to investigate the structural, electronic and magnetic properties of TiTe compound. The results showed that the ground state phase of TiTe is a non-magnetic NiAs structure and the zincblende (ZB) TiTe structure becomes stable at −5.2 GPa. It was predicted that the ZB structure is a half-metal ferromagnet with a magnetic moment of per formula unit for the equilibrium lattice parameter. The minority- spin and spin-flip gaps were calculated equal to 2.84 eV and 0.2 eV, respectively. In addition, the reasons for appearance of half-metallicity and magnetism in the ZB TiTe were discussed. It was noted that the half-metallicity characteristic exists within a wide range of lattice constant which makes the ZB TiTe an interesting material in the field of spintronics.  相似文献   

15.
ZnS nanotetrapods synthesized via a solvothermal route have a octahedral core with a zincblende (ZB) structure and four hexprism-shaped arms consisting of alternately stacking ZB and wurtzite (WZ) phases, where the WZ phase has a higher volume percentage. In situ angular-dispersive X-ray diffraction (ADXRD) measurements were carried out to study the structural behavior of ZnS nanotetrapods under high pressure up to 41.3?GPa. The initial WZ structure exhibits a very high mechanical stability to ~11.3?GPa. Both the WZ and ZB structures transform to the rocksalt (RS) structure at ~15.4?GPa. The bulk moduli of the WZ (148.2?±?8.9?GPa) and RS (165.6?±?9.9?GPa) phases are both larger than the previously reported values. These phenomena are discussed based on the alternating epitaxial growth of the WZ and ZB phases in the arms of nanotetrapods. Our study suggests that the internal structure of nanomaterials could also greatly affect their stability and transition behavior.  相似文献   

16.
The elastic properties, electronic structure and thermodynamic behavior of the TaB have been investigated for the first time in this work. Using first-principles plane-wave ultrasoft-pseudopotential density functional theory (DFT), the ground state properties and equation of state of TaB have been obtained. The average zero-pressure bulk modulus of TaB is 302 GPa. By analyzing the elastically anisotropic behavior and the relative structure parameters of TaB, we found that the crystal cell along the b-axis was more compressible than along the a and c axes. The calculated ratio of bulk modulus and shear modulus (B/G) for TaB is 1.58, demonstrating that TaB is rather brittle. From the elastic stiffness constants, we found that TaB in the Cmcm phase is mechanically stable. The calculated hardness of TaB is 28.6 GPa which is close to the previous data. Moreover, using the Gibbs 2 model, the thermodynamic properties such as the thermal expansion and Debye temperature of TaB have been obtained firstly. At the ambient temperature, the Debye temperatures of TaB are 792 K and 845 K from GGA calculation and LDA calculation, respectively.  相似文献   

17.
《Applied Surface Science》2005,239(3-4):394-397
Near-field photoluminescence (PL) was measured from ZnO film, composed of nanocrystallites with zinc-blend (ZB) and wurtzite (W) structures, on a sapphire (0 0 0 1) substrate at room temperature (RT). The size of nanocrystallites was in the range of 30–50 nm. Using a fiber probe with aperture size of 80 nm, two near-field emission peaks attributed to one ZB and one W structures were observed. The difference in the emission energies was 0.10 eV close to the calculated bandgap difference between ZB and W structures. The intensity of emission peak from ZB structure with lower energy was stronger than that from W structure, which is supposed to be resulted from the quenched excitonic effect of W structure.  相似文献   

18.
We provided the first theoretical evidence for a medium-range ordered phase in high pressure strontium from the first-principles calculations. At the absolute zero temperature, the enthalpy–pressure relation shows that the bcc and hcp are energetically more favorable than the other experimentally observed phases between 24 and 27 GPa. In the present work, we concentrate on the bcc phase because we found a link to a medium-range ordered phase. Our results reveal that the bcc phonon dispersion at the N and H points starts softening at around 24.1 GPa. The ab initio molecular dynamics at 300 K and 27 GPa showed that the bcc is quickly transformed into a lower energy structure with R3c symmetry and distorted basis. The simulated diffraction patterns showed that the R3c structure has only a single major peak at low angle. The R3c peak locates near the first peak of the bcc structure. This is the evidence of the so-called medium-range ordered phase. This structure is a strong candidate for the unsolved S-phase reported by experiments.  相似文献   

19.
Pyrite-structured Co0.2Fe0.8S2 nano wires with aspect ratio 45:1, synthesized using solution colloid method were studied under high pressure up to 8 GPa using 57Fe Mössbauer spectroscopy (using diamond anvil cell) and electrical resistivity (using tungsten carbide cell) techniques. Room temperature S K-edge XANES studies at INFN-LNF synchrotron beam line signified the changes in the electronic structure owing to Co substitution. Magnetic measurements at 5 K demonstrated disordered ferromagnetic behavior similar to Griffith phase. The value of isomer shift identified Fe in divalent, low spin state corresponding to pyrite structure. Higher value of quadrupole splitting observed at ambient condition was due to large lattice strain and electric field gradient generated by large surface to volume ratio of the nano size of the system. With applied pressure, the value followed the expected trend of increase up to 4.3 GPa, then to decrease till 6.4 GPa. Such change in the trend suggested a phase transition. On decompression to ambient pressure, the system seemed to retain high pressure phase and nano structure. The pressure coefficient of electrical resistivity varying from −0.0454 to −0.166 Ω-cm/GPa across the transition pressure of ~4.5 GPa was sluggish suggesting second order phase transition. The pressure-dependent variations by Mössbauer parameters and electrical resistivity showed identical result. This is the first report of pressure effect on nano sized Co0.2Fe0.8S2. Effect of particle size on transition pressure could not be evaluated due to lack of available reports on bulk system.  相似文献   

20.
Ab initio calculations based on the density functional theory within the full-potential linearized augmented plane wave method were carried out to investigate the structural stabilities of the different crystallographic phases, the pressure-induced phase transition and the electronic properties of the platinum carbide (PtC) compound. The zinc-blende (ZB), rock-salt (RS), cesium chloride (CsCl), wurtzite (WZ), nickel arsenide (NiAs), lead monoxide (PbO) and the tungsten carbide (WC) phases were considered. The exchange and correlation potential was treated by the generalized-gradient approximation using the Perde–Burke–Ernzerhof parameterization. The thermodynamic properties such as variation of the bulk modulus, lattice constant, heat capacity, thermal expansion and Debye temperature versus pressures and temperatures are investigated. The band structure results show the metallic character of the PtC compound in all the considered phases and the present study also shows that the PtC compound crystallizes in the ZB phase at ambient conditions. The theoretical transition pressures from the ZB to RS for the NiAs, PbO and CsCl transformations were also computed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号