首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crack propagation in glass coatings under expanding spherical contact   总被引:1,自引:0,他引:1  
The growth of transverse cracks under expanding spherical contact in a model system consisted of soda-lime glass bonded to a polycarbonate substrate is observed in situ from below or from the polished edge of the bilayer. Abrasion or chemical etching is employed on the coating surfaces to control the initial fracture. In the limit case of monoliths, the crack mouth becomes fully engulfed by the expanding contact, which results in a much steeper crack angle compared to the classical Hertzian cone case. As the coating thickness is reduced, flexure stresses are set in the coating which drive the cone crack to well away from the contact circle and initiate semi-elliptical-like radial cracks at the subsurface, right under the contact. Common to all three fracture modes is an initial unstable propagation phase following by a stable growth, with detrimental failure associated with severe damage to the top surface and/or delamination at the coating/substrate interface taking place at loads several times the fracture initiation loads.LEFM in conjunction with a large-strain FEM contact code is used to study the post-initiation fracture, with the crack path controlled by the principal stress trajectory or zero-mode II S.I.F. The analysis exposes the leading geometric and material parameters in each fracture mode, which may be useful in the design of bilayer structures for optimal mechanical performance. The well-known Auerbach law governing the initial fracture of monoliths is found to apply also to the bilayer crack systems within a certain range of the problem parameters. The numerical prediction for the crack profiles and the fracture envelopes generally collaborate well with the tests.  相似文献   

2.
A combined experimental/analytical work is carried out to elucidate the fracture resistance of a thin, hard coating bonded to a semi-infinite substrate due to indentation by a cylindrical surface. The bending of the coating under the softer substrate induces concentrated tensile stress regions at the lower and upper surfaces of the coating, from which cracks may ensue. The evolution of such damage in a model transparent system (glass/polycarbonate) is viewed in situ from below and from the side of the specimen. The critical load needed to initiate a crack on the lower coating surface generally increase proportionally to the coatings thickness, d. An interesting departure from this trend occurs for thin coatings, where the fracture load, although marred by a large scatter, increases somewhat with decreasing d. The fracture data for the upper coating surface are limited to relatively thick coatings due to the recurrence of premature failure from the coating edges. The behavior in this range is similar to that for the lower surface crack, albeit with an order of magnitude greater fracture resistance.A fracture mechanics analysis in conjunction with FEM is performed to elucidate the stress intensity factors responsible for crack propagation. A crack normal to the coating surface is assumed to emanate either from the lower or upper surface of the coating. A major feature of the solution is the occurrence of a bending-induced compression stress field over a region ahead of the crack tip. This effect, which become more dominant as the ratio between the contact length and the coating thickness is increased, tends to delay the onset of crack propagation, especially for the lower surface crack. Consequently, in applications associated with large indenters, thin and/or tough coatings and stiff substrates, cracking from the upper coating surface may precede that from the lower surface. An interesting feature of this crack shielding mechanism is that when the coating surface contains a distribution of flaws rather than a single crack, small flaws in this population may be more detrimental than large ones. Incorporation of these aspects into the analysis leads to a good correlation with the test results. In the special case of line loading, which constitutes a lower bound for the critical loads, a closed-form, approximate solution for the stress intensity factors or the critical loads are obtained.Plane-strain indentation, although less common than spherical indentation, allows for characterizing the fracture resistance of opaque films through observation from the specimen edge. This approach is not easily implemented to thin films (i.e., less than about a hundred microns), however.  相似文献   

3.
Hard wear resistant coatings that are subjected to contact loading sometimes fail because the coating delaminates from the substrate. In this report, systematic finite element computations are used to model coating delamination under contact loading. The coating and substrate are idealized as elastic and elastic–plastic solids, respectively. The interface between coating and substrate is represented using a cohesive zone law, which can be characterized by its strength and fracture toughness. The system is loaded by an axisymmetric, frictionless spherical indenter. We observe two failure modes: shear cracks may nucleate just outside the contact area if the indentation depth or load exceeds a critical value; in addition, tensile cracks may nucleate at the center of the contact when the indenter is subsequently removed from the surface. Delamination mechanism maps are constructed which show the critical indentation depth and force required to initiate both shear and tensile cracks, as functions of relevant material properties. The fictitious viscosity technique for avoiding convergence problems in finite element simulations of crack nucleation and growth on cohesive interfaces allows us to explore a wider parametric space that a conventional cohesive model cannot handle. Numerical results have also been compared to analytical analyses of asymptotic limits using plate bending and membrane stretching theories, thus providing guidelines for interpreting the simulation results.  相似文献   

4.
This paper considers the explicit solutions of free-edge stresses near circumferential cracks in surface coatings of circular torsion bars and their application in determining the progressive cracking density in the coating layers. The problem was formulated within the framework of linear elastic fracture mechanics (LEFM). The free-edge stresses near crack tip and the shear stresses in the cross-section of the torsion bar were approached in explicit forms based on the variational principle of complementary strain energy. Criterion for progressive cracking in the coating layer was established in sense of strain energy conservation, and the crack density is thereby estimated. Effects of external torque, aspect ratio, and elastic properties on the density of progressive cracking were examined numerically. The present study shows that, in the sense of inducing a given crack density, compliant coating layer with lower modulus has much higher critical torque than that of a stiffer one with the same geometries and substrate material, i.e., compliant coating layer has greater cracking tolerance. Meanwhile, the study also indicates that thicker surface coating layer is more pliant to cracking than the thinner ones. The present model can be used for analyzing the damage mechanism and cracking tolerance of surface coatings of torsion shafts and for data reduction of torsional fracture test of brittle surface coatings, etc.  相似文献   

5.
Very thin oxide coatings (<100 nm) which are used as anti-reflection and barrier layers in low emissivity architectural glass have been studied by nanoindentation methods to determine the effect of coating thickness on fracture toughness. Traditional microindentation-derived methods to determine the fracture toughness are unsuitable for assessing very thin coatings (<500 nm) and alternative energy-based models are required depending on what features are visible in indentation load–displacement curves. In cases where radial cracks are formed and grow in a discontinuous manner there are excursions in the load–displacement curve which can be the basis for analysis. In cases where picture frame cracks are observed there are no such features and an alternative approach based on assessment of irreversible work of indentation is required. This paper reviews the methods for obtaining fracture toughness data for very thin coatings and assesses the existence of size effects in the mechanical response of oxide coatings with different thickness on a glass substrate. For oxide coatings in the thickness range 100 to 400 nm no size effects in fracture toughness were observed.  相似文献   

6.
For a multilayer elastic half-space, we consider an axisymmetric loading model taking into account damage on the interface between the layers. The influence of intermediate layers arising in various coating technologies on the contact and internal stresses occurring in the coating and the substrate under elastic indentation conditions is studied for relatively rigid and nonrigid coatings.  相似文献   

7.
An efficient procedure to analyze damage evolution in brittle coatings under influence of thermal loads is suggested. The approach is based on a general computational scheme to determine damage evolution parameters, which incorporates an analytical solution of the appropriate interim boundary-value thermoelasticity problem. For thin inhomogeneous coatings, the simplification in the analysis is achieved by application of the mathematical model with generalized boundary conditions of thermomechanical conjugation of the substrate with environment via the coating. Efficiency of the suggested approach is illustrated by an example of damage evolution in the alumina coating on the titanium-alloy and tungsten substrates under uniform heating.  相似文献   

8.
Fracture toughness is one of the crucial mechanical properties of brittle materials such as glasses and ceramics which demonstrate catastrophic failure modes. Conventional standardized testing methods adopted for fracture toughness determination require large specimens to satisfy the plane strain condition. As for small specimens, indentation is a popular, sometimes exclusive testing mode to determine fracture toughness for it can be performed on a small flat area of the specimen surface. This review focuses on the development of indentation fracture theories and the representative testing methods. Cracking pattern dependent on indenter geometry and material property plays an important role in modeling, and is the main reason for the diversity of indentation fracture theories and testing methods. Along with the simplicity of specimen requirement is the complexity of modeling and analysis which accounts for the semi-empirical features of indentation fracture tests. Some unresolved issues shaping the gap between indentation fracture tests and standardization are also discussed.  相似文献   

9.
采用阴极弧等离子沉积技术在高速钢(HSS)和硬质合金钢(WC-Co)基体上制备TiN涂层,利用往复摩擦磨损试验机、轮廓仪、扫描电子显微镜和能谱仪等分析了不同法向载荷下TiN涂层的摩擦磨损特性和失效过程,建立了涂层磨损寿命图. 研究结果表明:TiN涂层/HSS试样摩擦系数随循环次数增加呈上升趋势;TiN涂层/WC-Co试样在30 N法向载荷下的摩擦系数随循环次数呈上升趋势,在60~120 N法向载荷下摩擦系数波动较大. 涂层试样的磨损深度随法向载荷与循环次数的增加而增加. TiN涂层/HSS试样在30 N法向载荷的主要失效形式是磨粒磨损、轻微黏着磨损和氧化磨损,在60~120 N法向载荷的主要失效形式是涂层断裂、磨粒磨损和剥层磨损. TiN涂层/WC-Co试样在30~50 N法向载荷下的主要失效形式是磨粒磨损,在60~120 N法向载荷下的主要失效形式是严重剥层. TiN涂层的磨损寿命图可以分为两部分:涂层工作区和涂层失效区. 接触应力越大,涂层磨损寿命越短. 基体材料抵抗变形的能力越强,涂层磨损寿命越长. TiN涂层/HSS基体具有良好的抵抗法向载荷的能力和较长的磨损寿命.   相似文献   

10.
The single nanobelt simplified as transversely isotropic is modeled by three dimension element during the modeling of finite element method (FEM), and the mechanical constants of ZnS nanobelt are obtained by combining nanoindentation test and FEM. In the forward analysis, the numerical loading curves at the appropriate penetration depth are simulated by using the purely mechanical indentation (PMI) and piezoelectric indentation (PI) modes to extract the numerical maximum indentation load and numerical loading curve exponent, and they are used to establish the dimensionless equations related with the mechanical constants of nanobelt by fitting the mechanical constants vs numerical maximum indentation load and numerical loading curve exponent curves. In the reverse analysis, the experimental indentation curve performed on ZnS nanobelt is fitted as the power function to obtain the maximum indentation load and the loading curve exponent and they are substituted into the dimensionless equations to solve the mechanical constants of the nanobelt. In order to verify the validity, the mechanical constants are inputted into ABAQUS software to obtain the computational loading curves under PMI and PI modes, and they are in good agreement with the experimental indentation curve of ZnS nanobelt. The combination solutions of mechanical constants under PMI mode is of larger total error than those under PI mode, and it indicates that the piezoelectric effect should be reasonably considered into the developed method, which is effective to determine the mechanical property of single nanobelt.  相似文献   

11.
Four-point bend (FPB) specimen is an important test sample in mixed mode fracture study of notched components made from brittle materials like rocks, brittle polymers, ceramics, etc. On the other hand, the notch stress intensity factors (NSIFs) are vital parameters in brittle fracture assessment of V-notched structures. Therefore, computation of NSIFs in FPB specimens is of practical interest to engineers and researchers. Since the available methods for calculating the NSIFs are often cumbersome and need complicated calculations, it is preferred to show them as a set of dimensionless parameters for the FPB specimen. In this research, the finite element method coupled with a recently developed algorithm called FEOD is employed to calculate the NSIFs of a FPB specimen for several V-shape notches and for different combinations of mode I and mode II. The obtained NSIFs are then converted to dimensionless parameters called notch shape factors and are illustrated in a number of figures. It is shown that depending on the notch depth and the location of loading points, full mode mixity from pure mode I to pure mode II can be provided in the FPB specimen. The numerical results obtained in this research are verified by using very limited results reported earlier in literature.  相似文献   

12.
采用大气等离子喷涂法分别以纳米和常规喂料制备出2种WC—Co涂层,在SRV摩擦磨损试验机上考察了2种涂层在干摩擦和水环境中的摩擦磨损性能.结果表明:在干摩擦和水环境中,纳米WC—Co涂层的摩擦系数和磨损率均小于常规WC—Co涂层;纳米和常规WC—Co涂层的磨损机制差异不大,在干摩擦下其磨损机制主要以粘着磨损、剥落和磨粒磨损为主;在水环境中,WC—Co涂层与Si3N4配副时的摩擦系数和磨损量较与不锈钢球配副时高,2种摩擦副的磨损机理有所不同,前者主要以剥落和疲劳磨损为主,后者主要以粘着磨损为主,伴有轻微的磨粒磨损.  相似文献   

13.
In this paper, acoustic emission (AE) and digital image correlation methods were applied to monitor interface cracking in thermal barrier coatings under compression. The interface failure process can be identified via its AE features, including buckling, delamination incubation and spallation. According to the Fourier transformation of AE signals, there are four different failure modes: surface vertical cracks, opening and sliding interface cracks, and substrate deformation. The characteristic frequency of AE signals from surface vertical cracks is 0.21 MHz, whilst that of the two types of interface cracks are 0.43 and 0.29 MHz, respectively. The energy released of the two types of interface cracks are 0.43 and 0.29 MHz, respectively. Based on the energy released from cracking and the AE signals, a relationship is established between the interface crack length and AE parameters, which is in good agreement with experimental results.  相似文献   

14.
The concept of functionally graded material (FGM) is actively explored in coating design for the purpose of eliminating the mismatch of material properties at the coating/substrate interface, typical for conventional coatings, which can lead to cracking, debonding and eventual functional failure of the coating. In this paper, an FGM coating/substrate system of finite thickness subjected to transverse loading is analysed within the context of three-dimensional elasticity theory. The Young’s modulus of the coating is assumed to vary exponentially through the thickness, and the Poisson’s ratio is assumed to be constant. A comparative study of FGM versus homogeneous coating is conducted, and the dependence of stress and displacement fields in the coating substrate/system on the type of coating, geometry and loading is examined and discussed.  相似文献   

15.
在结构轻量化的进程中,新型薄板材料被大量使用,新兴的压印连接技术可以实现这些材料的连接.以钛合金为主要材料进行压印连接实验,结果显示材料的母材性能对连接性能、接头强度、失效形式均有一定的影响.压印接头的拉伸-剪切失效形式为颈部断裂时,拉伸-剪切实验过程中载荷位移曲线有两次明显的下降过程,分别是由于圆形压印点的上半部分颈部被拉断,圆压印点的下半部分颈部被拉断造成的.微观分析显示TA1-TA1压印接头断口呈现类解理穿晶断裂,5052-TA1压印接头断口出现拉长韧窝特征,属于塑性断裂,1420-TA1接头断口呈现大面积平面及少量冰糖状花样,属于沿晶脆性断裂.  相似文献   

16.
In recent years, functionally graded material (FGM) has been widely explored in coating technology amongst both academic and industry communities. FGM coatings are suitable substitutes for many typical conventional coatings which are susceptible to cracking, debonding and eventual functional failure due to the mismatch of material properties at the coating/substrate interface. In this study, a thick spherical pressure vessel with an inner FGM coating subjected to internal and external hydrostatic pressure is analyzed within the context of three-dimensional elasticity theory. Young’s modulus of the coating is assumed to vary linearly or exponentially through the thickness, while Poisson’s ratio is considered as constant. A comparative numerical study of FGM versus homogeneous coating is conducted for the case of vessel under internal pressure, and the dependence of stress and displacement fields on the type of coating is examined and discussed.  相似文献   

17.
Studies on channel cracking are generally limited to elastic films on elastic or inelastic substrates. There are important applications were the cracking process involves extensive plasticity in both the film and substrate, however. In this work steady-state channel cracking in inelastic thin-film bilayers undergoing large-scale yielding from thermal or mechanical loading is studied with the aid of a plane-strain FEA. The plasticity of the film and substrate, represented by a Ramberg–Osgood constitutive law, each increases the energy release rate (ERR) relative to the linearly-elastic case. This effect is more pronounced under mechanical loading where the entire bilayer undergoes large-scale yielding. To help assess the analytic approach some fragmentation tests are performed using a well-bonding epoxy/aluminum system. The analysis reproduced well the observed dependence of crack initiation strain on film thickness.Ultra-thin films may be well represented by an elastic-perfectly plastic response. For such films on a flexible support the ERR remains fixed as the applied strain exceeds the yield strain of the film. Accordingly, a critical coating thickness exists below which no channel cracking is possible. The explicit relations and graphical data presented may be used for optimal design of such structures against premature failure as well as for determining fracture energy of ductile thin films.  相似文献   

18.
The strength and ductility of microcrystalline and nanocrystalline tungstsen carbide-cobalt (WC-Co) cermets have been evaluated by employing a stored energy Kolsky bar apparatus, high-speed photography and digital image correlation. The test specimens were thin-walled tubular AI7075-T6 substrates 250 μm thick, coated with a 300 μm thick microcrystalline or nanocrystalline WC-Co layer with an average grain size of about 3 μm and 100 nm, respectively. Dynamic torsion experiments reported in this paper reveal a shear modulus of 50 GPa and a shear strength of about 50 MPa for both microcrystalline and nanocrystalline WC-Co coatings. The use of high-speed photography along with digital image correlation has shown that damage to the coating coincides with a significant softening on the stress-strain curve. The coating failed in mode III, and strong interactions between the crack faces were probably responsible for the increase in load after failure of the coating. The overall failure of the coating-substrate system was not brittle but rather progressive and controlled by the ductility of the aluminum substrate. A methodology for investigating damage kinetics and failure has been established. This methodology can be applied to examine the behavior of other advanced materials that can be manufactured as coatings on ductile substrates. Manufacturing coatings free of initial microcracks remains a significant challenge. Research on optimization of the spray deposition parameters should be pursued to produce high-quality nanostructured coatings that can fully exploit the benefits of nano-size grains.  相似文献   

19.
固体力学中侵入问题的若干新进展   总被引:6,自引:0,他引:6  
张宗贤  寇绍全 《力学进展》1992,22(2):183-193
本文主要介绍了固体力学中侵入问题近10余年来的发展情况。重点综述了侵入断裂实验及理论研究的新成果;讨论了动静态侵入断裂的关系;简述了侵入方法在测定材料断裂韧性方面的应用。   相似文献   

20.
彭中伏  陈学军 《力学学报》2018,50(2):307-314
边裂(边缘开裂)是涂层热致损伤的主要模式之一. 边缘裂纹穿透涂层后,常导致界面脱粘从而驱使涂层与基体剥离,最终丧失对基体的保护作用. 本文以热应力强度因子表征边缘裂纹的扩展驱动力,研究筒壁涂层在热对流作用下的边裂行为. 首先,利用拉普拉斯变换法,得到了瞬态温度场及热应力场的封闭解. 其次,运用Fett等的三参数法确定了筒壁涂层边缘裂纹的权函数. 最后,基于叠加原理和权函数方法计算了边缘裂纹的热应力强度因子. 探讨了无量纲时间、边缘裂纹深度、基体/涂层厚度比、热对流强度等参数对热应力强度因子的影响规律. 结果表明:热应力强度因子的峰值既非发生在热载荷初始时刻,也非发生在热稳态时刻,而出现在时间历程的中间时刻;增大热对流强度不仅可提高热应力强度因子的峰值,而且使峰值提前出现;其他条件相同时,热应力强度因子随着边缘裂纹长度的增大而降低;增大涂层厚度或减小基体厚度可增强涂层抵抗瞬态热载荷的能力.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号