首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of novel nanocomposites constituted of FeCo nanoparticles dispersed in an ordered cubic Im3m mesoporous silica matrix (SBA-16) have been successfully synthesized using the wet impregnation method. SBA-16, prepared using the non-ionic Pluronic 127 triblock copolymer as a structure-directing agent, is an excellent support for catalytic nanoparticles because of its peculiar three-dimensional cage-like structure, high surface area, thick walls, and high thermal stability. Low-angle X-ray diffraction, N2 physisorption, and transmission electron microscopy analyses show that after metal loading, calcination at 500 °C, and reduction in H2 flux at 800 °C, the nanocomposites retain the well-ordered structure of the matrix with cubic symmetry of pores. FeCo alloy nanoparticles with spherical shape and narrow size distribution (4–8 nm) are homogeneoulsy distributed throughout the matrix and they seem in a large extent to be allocated inside the pores.  相似文献   

2.
Core-shell-structured LiNi0.5La0.08Fe1.92O4-polyaniline (PANI) nanocomposites with magnetic behavior were synthesized by in situ polymerization of aniline in the presence of LiNi0.5La0.08Fe1.92O4 nanoparticles. The structure, morphology and magnetic properties of samples were characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), UV-vis absorption, transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) technique. The results of spectroanalysis indicated that there was interaction between PANI chains and ferrite particles. TEM study showed that LiNi0.5La0.08Fe1.92O4-PANI nanocomposites presented a core-shell structure with a magnetic core of 30-50 nm diameter and an amorphous shell of 10-20 nm thickness. The nanocomposites under applied magnetic field exhibited the hysteresis loops of the ferromagnetic nature. The saturation magnetization and coercivity of nanocomposites decreased with decreasing content of LiNi0.5La0.08Fe1.92O4. The polymerization mechanism and bonding interaction in the nanocomposites have been discussed.  相似文献   

3.
A series of highly ordered mesoporous materials (CF-SBA-15) with heat-resistant magnetism have been successfully prepared from impregnation of cobalt salt, iron salt, and citric acid with as-synthesized SBA-15. XRD and N2 isotherms indicate that these materials have highly ordered hexagonal mesoporous symmetry and open pore systems. The measurement of magnetic property shows that these materials are ferromagnetic even if calcined at 550 °C for 10 h in air, indicating their good heat-resistant magnetism. These results would be very important for recycle and regeneration of adsorbents and catalysts in practical applications. Moreover, this method may be useful for other mesoporous materials with thermally stable magnetism from a combination of other mesoporous materials such as MCM-41 with magnetic nanoparticles of MnFe2O4 and NiFe2O4.  相似文献   

4.
Visible-light responsive monoclinic BiVO4/MWCNT nanocomposites were facilely prepared via an in situ hydrothermal method by using sodium dodecyl sulfonate (SDS) as a guiding surfactant. The as-prepared BiVO4/MWCNT nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), the Fourier transform infrared spectroscopy (FTIR) and UV–vis diffuse reflectance spectroscopy. The results showed that the hydrothermal temperature and adding SDS had significant influence on the morphology and size of BiVO4. The photocatalytic activities of BiVO4/MWCNT nanocomposites were investigated by degrading methylene blue (MB) under visible-light irradiation. Remarkable enhancement in photodecomposition of MB was observed with BiVO4/MWCNT composite compared with bare BiVO4 particles. This improvement of photocatalytic was attributed to the effective charge transfer from BiVO4 nanocrystals to MWCNT, which promoted the migration efficiency of photogenerated electron–hole. Furthermore, a possible mechanism for the photocatalytic oxidative degradation was also discussed.  相似文献   

5.
《Current Applied Physics》2015,15(6):753-758
Pollutants from textile industries into water-bodies have caused huge environmental hazards. The semiconductor mediated photocatalytic purification of polluted water is a promising environmental remediation technology. In the present study MnWO4–TiO2 composite nanoflowers endowed with efficient photocatalytic activity have been successfully synthesized by facile hydrothermal approach. XRD, SEM, TEM, EDX spectroscopy and UV-DRS were used to characterize the as-synthesized samples. The average size of composite nanoflower is ∼2 μm while the nanorods constructing the nanoflowers had the average diameters of 90 nm. The photocatalytic activity of the MnWO4–TiO2 nanoflowers for the degradation of methyl orange (MO) in visible light was much higher than of pristine TiO2 nanorods and MnWO4 nanoflowers respectively. The superior photocatalytic activity could be attributed to the formation of a MnWO4–TiO2 heterojunction in the MnWO4–TiO2 nanoflowers.  相似文献   

6.
A facile method for synthesizing color-tunable magnetic and luminescent hybrid bifunctional nanoparticles is presented. A series of CdSe/ZnS core-shell quantum dots (QDs) with different sizes were successfully fabricated and self-assembled to Fe3O4 magnetic nanoparticles (MNP), which were subsequently coated with a polyethyleneimine (PEI) layer to prevent large aggregates. The hydrophobic QDs capped with trioctylphosphine oxide (TOPO) formed a coating surrounding MNP, and were transferred into hydrophilic phase by PEI with high efficiency. The samples were characterized by TEM, FT-IR, XRD, EDS, UV-vis spectrophotometer, fluorescent spectrophotometer and PPMS. Results show that the original properties of the nanoparticles were well-preserved in the hybrid structure. All MNP-QDs hybrid nanoparticles showed paramagnetic behavior and the nanocomposites were still highly luminescent with no shift in the PL peak position.  相似文献   

7.
Highly ordered mesoporous Co3O4, NiO, and their metals were synthesized by nanocasting method using there corresponding mesoporous SBA-15 silica as a template. The obtained porous metal oxides have high surface areas, large pore volume, and a narrow pore size distribution. The N2-adsorption data for mesoporous metal oxides have provided the BET area of 257.7 m2 g−1 and the total pore volume of 0.46 cm3 g−1. The mesoporous metals were employed as a catalyst in the synthesis of (S)-3-pyrrolidinol from chiral (S)-4-chloro-3-hydroxybutyronitrile, and a high yield to (S)-3-pyrrolidinol-salt was obtained on the mesoporous Co metal catalyst.  相似文献   

8.
MnWO4 nano- and microcrystals with various morphologies have been prepared by the surfactant-assisted hydrothermal method. The crystals were characterized by X-ray diffraction, scanning electron microscopy and magnetic measurements. Different morphologies and growth mechanisms of MnWO4 crystals depend on the surfactant employed. Our results reveal that the MnWO4 nanocrystals exhibit weak ferromagnetism at low temperature due to incomplete spin compensation on the surface with nanoparticle size, while microflowers show antiferromagnetic behavior at low temperature. The crystal morphologies and the size effects associated with surfactants result in these tunable magnetic behaviors.  相似文献   

9.
NiFe2O4/SiO2 nanocomposites were prepared using a sol–gel method with the addition of 3-aminopropyltrimethoxysilane (APS). Different phases and morphologies of NiFe2O4/SiO2 nanocomposites were obtained when different amounts of APS were used. The structural properties of the products were examined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Sheet-like morphology was observed at higher molar ratio of APS to NiFe2O4, while spherical NiFe2O4/SiO2 nanoparticles separated from each other were formed at lower molar ratio of APS to NiFe2O4. The magnetic properties of the nanocomposites were also investigated, indicating that the interparticle interactions exhibit strong dependence on the molar ratio of APS to NiFe2O4.  相似文献   

10.
N-doped ZnO–SBA-15 materials (denoted as nN–xZnO–SBA-15, where n is number of urea treatments and x is the weight ratio of ZnO/(ZnO+SBA-15)) were successfully synthesized by a two-step procedure. First, xZnO–SBA-15 was prepared by impregnating SBA-15 with Zn(NO3)2, followed by calcinating at 550 °C. In the second step, xZnO–SBA-15 was modified n times by doping nitrogen with the assistance of urea. The resulting nN–xZnO–SBA-15 materials prepared with various numbers of urea treatments were characterized by XRD, TEM, SEM, EDS, N2 adsorption/desorption at 77 K, diffuse reflectance UV–vis, and XPS. The results show that the nN–xZnO–SBA-15 maintains its ordered hexagonal mesostructure and exhibits light absorbance in the visible region. The nN–xZnO–SBA-15 samples were investigated with the photodegradation of methylene blue under visible light, and exhibited significant photocatalytic activity. The kinetics of the reaction obeyed the Langmuir–Hinshelwood model.  相似文献   

11.
Highly dispersed anisotropic Ag nanostructures were synthesized within the channels of 3-aminopropyltrimethoxysilane (APTMS)-modified mesoporous SBA-15 for catalyzing the reduction of p-dinitrobenzene, p-nitrophenol, and p-nitroacetophenone, respectively. A green templating process without involving any reducing agent, by varying the amount (1–10 wt.%) of Ag loading followed by calcination at 350 °C under H2 led to change in the morphology of Ag nanoparticles from nanospheres (~7–8 nm) to nanorods (aspect ratio ~12–30 nm) without any deformation in mesoporous sieves. In comparison to white bare SBA-15, gray-colored samples were formed with Ag impregnation exhibiting absorption bands at 484 and 840 nm indicating the formation of anisotropic Ag nanostructures within mesoporous matrix. TEM and FE-SEM micrographs confirmed the presence of evenly dispersed Ag nanostructures within as well as on the surface of mesoporous matrix. AFM studies indicated a small decrease in the average roughness of SBA-15 from 20.59 to 19.21 nm for 4 wt.% Ag/m-SBA-15, illustrating the encapsulation of majority of Ag nanoparticles in the siliceous matrix and presence of small amount of Ag nanoparticles on the mesoporous support. Moreover, due to plugging of mesopores with Ag, a significant decrease in surface area from 680 m2/g of SBA-15 to 385 m2/g was observed. The Ag-impregnated SBA-15 catalyst displayed superior catalytic activity than did bare SBA-15 with 4 wt.% Ag-loaded catalyst exhibiting optimum activity for selective reduction of p-nitrophenol to p-aminophenol (100 %), p-nitroacetophenone to p-aminoacetophenone (100 %), and p-dinitrobenzene to p-nitroaniline (87 %), with a small amount of p-phenylenediamine formation.
Graphical abstract This paper demonstrates the spontaneous formation of uniformly dispersed Ag nanospecies of various morphologies (nanospheres, size ~7–8 nm and nanorods, aspect ratio ~12–30 nm), both within as well as on the surface of the mesoporous SBA-15, as a function of increased Ag loading. Surface structural and other physiochemical properties of Ag/m-SBA-15 nanocomposites were considerably influenced w.r.t change in Ag loading. Ag/m-SBA-15 nanocomposites with 4 wt.% Ag loading exhibited the highest selectivity (87 %) for the selective reduction of p-dinitrobenzene to p-nitroaniline and 100 % selectivity for p-nitrophenol to p-aminophenol and p-nitroacetophenone to p-aminoacetophenone, respectively.
  相似文献   

12.
Hexagonally ordered mesoporous silica materials, MCM-41 and SBA-15, have been synthesized and loaded with Ag nanoparticles, utilizing both chemical synthesis and ultra-short pulsed laser ablation in liquid. In laser ablation, a silver target, immersed in aqueous suspension of ordered mesoporous silica SBA-15, was irradiated by ultra-short laser pulses to generate silver nanoparticles. For comparison, samples of similar silver contents were prepared either by incorporating silver into the SBA-15 during a hydrothermal synthesis or by introducing silver in MCM-41 by template ion-exchange. Samples were characterized by XRD, N2 physisorption, TEM and UV–vis spectroscopy. All preparations contained significant amount of 5–50 nm size silver agglomerates on the outer surface of the silica particles. The laser ablation process did not cause significant destruction of the SBA-15 structure and metallic silver (Ag0) nanoparticles were mainly generated. It is demonstrated that by laser ablation in aqueous silica suspension smaller and more uniform metallic silver particles can be produced and loaded on the surface of the silica support than by synthesis procedures. Catalytic properties of the samples have been tested in the total oxidation of toluene. Because of its favorable Ag dispersity, the Ag/SBA-15 catalyst, generated by the laser ablation method, had better catalytic stability and, relative to its Ag load, higher activity than the conventional Ag/SBA-15 preparations.  相似文献   

13.
Pulsed laser ablation (PLA) of ceramic target in liquid phase was successfully employed to prepare calcium tungstate (CaWO4) and calcium molybdate (CaMoO4) colloidal nanoparticles. The crystalline phase, particle morphology and optical property of the colloidal nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy. The produced stable colloidal suspensions consisted of the well-dispersed nanoparticles showing a spherical shape. The mechanism for the laser ablation and nanoparticle forming was discussed under consideration of photo-ablation process. Nanoparticle tracking analysis using optical microscope combined with image analysis was proposed to determine the size distribution function of the prepared colloidal nanoparticles. The mean size of the CaWO4 and CaMoO4 colloidal nanoparticles were 16 and 29 nm, with a standard deviations of 2.1 and 5.2 nm, respectively.  相似文献   

14.
Microwave-assisted synthesis is a novel method used to synthesize CdMoO4 nanoparticles in propylene glycol. The effects of reaction time and microwave power on phase, morphologies, and optical properties of CdMoO4 nanoparticles were studied, using X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and UV-visible spectroscopy. The present analyses proved that these crystalline powders were scheelite-type tetragonal structured CdMoO4, with the crystallite size of 14-20 nm, and 4.51-4.73 eV band gaps, controlled by the synthetic conditions.  相似文献   

15.
Magnetoelectric (ME) nanocomposites containing Ni0.75Co0.25Fe2O4-BiFeO3 phases were prepared by citrate sol-gel process. X-ray diffraction (XRD) analysis showed phase formation of xNi0.75Co0.25Fe2O4-(1−x)BiFeO3 (x=0.1, 0.2, 0.3 and 0.4) composites on heating at 700 °C. Transmission electron microscopy revealed the formation of powders of nano order size and the crystal size was found to vary from 30 to 85 nm. Dispersion in dielectric constant (ε) and dielectric loss (tan δ) in the low-frequency range have been observed. It is seen that nanocomposites exhibit strong magnetic properties and a large ME effect. On increasing Ni0.75Co0.25Fe2O4 contents in the nanocomposites, the saturation magnetization (MS) and coercivity (HC) increased after annealing at 700 °C. The large ME output in the nanocomposites exhibits strong dependence on magnetic bias and magnetic field frequency. The large value of ME output can be attributed to small grain size of ferrite phase of nanocomposite being prepared by citrate precursor process.  相似文献   

16.
To investigate the driving force for bilirubin adsorption on mesoporous materials, a comparative study was carried out between pure siliceous SBA-15 and three functionalized SBA-15 mesoporous materials: CH3-SBA-15 (MS), NH2-SBA-15 (AS), and CH3/NH2-SBA-15 (AMS) that were synthesized by one-pot method. The obtained materials exhibited large surface areas (553-810 m2/g) and pore size (6.6-7.1 nm) demonstrated by XRD and N2-ad/desorption analysis. The SEM images showed that the materials had similar fiberlike morphology. The functionalization extent was calculated according to 29Si MAS NMR spectra and it was close to the designed value (10%). The synthesized mesoporous materials were used as bilirubin adsorbents and showed higher bilirubin adsorption capacities than the commercial active carbon. The adsorption capacities of amine functionalized samples AMS and AS were larger than those of pure siliceous SBA-15 and MS, indicating that electrostatic interaction was the dominant driving force for bilirubin adsorption on mesoporous materials. Increasing the ionic strength of bilirubin solution by adding NaCl would decrease the bilirubin adsorption capacity of mesoporous material, which further demonstrated that the electrostatic interaction was the dominant driving force for bilirubin adsorption. In addition, the hydrophobic interaction provided by methyl groups could promote the bilirubin adsorption.  相似文献   

17.
This work reports a new photoluminescence (PL) emission peak at about 402 nm from amorphous ZnO nanoparticles in a silica matrix, and the energy transfer from it to Eu3+ ions. The amorphous ZnO-SiO2 nanocomposites were prepared by the sol-gel method, which is verified by X-ray diffraction (XRD) profiles and FT-IR spectra. The luminescence emission spectra are fitted by four Gauss profiles, two of which at longer wavelength are due to the defects of the material and the others to amorphous ZnO nanoparticles and the Zn-O-Si interface state. With the reduction of Zn/Si ratio and diethanolamine, the relative intensities of visible emission decrease. The weak visible emission is due to the reduction of defects after calcined at high temperature. The new energy state at the Zn-O-Si interface results in strong emission at about 402 nm. When Eu3+ ions are co-doped, weak energy transfer from ZnO-SiO2 nanocomposites to Eu3+ emission are observed in the excitation spectra.  相似文献   

18.
Size controlled cubic Fe3O4 nanoparticles in the size range 90–10 nm were synthesized by varying the ferric ion concentration using the oxidation method. A bimodal size distribution was found without ferric ion concentration and the monodispersity increased with higher concentration. The saturation magnetization decreased from 90 to 62 emu/g when the particle size is reduced to 10 nm. The Fe3O4 nanoparticles with average particle sizes 10 and 90 nm were surface modified with prussian blue. The attachment of prussian blue with Fe3O4 was found to depend on the concentration of HCl and the particle size. The saturation magnetization of prussian blue modified Fe3O4 varied from 10 to 80 emu/g depending on the particle size. The increased tendency for the attachment of prussian blue with smaller particle size was explained based on the surface charge. The prussian blue modified magnetite nanoparticles could be used as a radiotoxin remover in detoxification applications.  相似文献   

19.
Metal-carbon nanotube-graft-polymer (MCNT-g-P) nanocomposites were synthesized and characterized successfully. In this work, multiwall carbon nanotubes (MWCNT) were opened using HNO3/H2SO4 mixture and filled by metal nanoparticles such as silver nanoparticles through wet chemistry method. Then MWCNT containing metal nanoparticles were used as macroinitiator for ring opening polymerization of ε-caprolactone and MCNT-g-P nanocomposites were obtained. Length of grafted polymer arms onto the MWCNT was controlled using MWCNT/ε-caprolactone ratio. Structure and properties of nanocomposites were evaluated by TEM, DSC, TGA, and spectroscopy methods.  相似文献   

20.
Carbon–silica nanocomposites obtained by rice husk carbonization in a fluidized-bed reactor using a deep oxidation copper–chromium catalyst were studied. Dispersion characteristics of the silica phase in these systems were determined by small-angle X-ray scattering (SAXS) using the full contrast technique. SiO2 was found in the initial rice husk as compact nanoparticles having a wide size distribution. This distribution consists of a narrow fraction with particle sizes from 1 to 7 nm and a wider fraction with particle sizes from 8 to 22 nm. Oxidative heat treatment of rice husk in a fluidized bed in the presence of the catalyst decreased the fraction of small SiO2 particles and increased the fraction of large ones. It was demonstrated that the particle size of silica in the carbon matrix can be determined selectively for deliberate design of porous carbon materials with desired properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号