首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prior experiments have revealed exceptionally high values of the work of fracture (0.4-) in carbon/epoxy 3D interlock woven composites. Detailed destructive examination of specimens suggested that much of the work of fracture arose when the specimens were strained well beyond the failure of individual tows yet still carried loads . A mechanism of lockup amongst broken tows sliding across the final tensile fracture surface was suggested as the means by which high loads could still be transferred after tow failure. In this paper, the roles of weave architecture and the distribution of flaws in the mechanics of tow lockup are investigated by Monte Carlo simulations using the so-called Binary Model. The Binary Model was introduced previously as a finite element formulation specialised to the problem of simulating relatively large, three-dimensional segments of textile composites, without any assumption of periodicity or other symmetry, while preserving the architecture and topology of the tow arrangement. The simulations succeed in reproducing all qualitative aspects of measured stress-strain curves. They reveal that lockup can indeed account for high loads being sustained beyond tow failure, provided flaws in tows have certain spatial distributions. The importance of the interlock architecture in enhancing friction by holding asperities on sliding fibre tows into firm contact is highlighted.  相似文献   

2.
Delayed fracture due to debonding can be observed in many unidirectional fibre-reinforced composites when the fibre/matrix interface experiences creep. The aim of this work is to describe such a phenomenon within the recently proposed modeling framework of transverse isotropy that allows for a neat decomposition of the mechanical behavior into fibre-directional, transverse, and pure shear parts. Specifically, debonding is here chosen to be governed by the tension transverse to the fibres. One can then speak of a mode-I debonding if use is made of the terminology adopted in fracture mechanics. On another hand, the time-dependent response is attributed to the matrix constituent. As the role of this latter is to deform and support stresses primarily in shear, a viscoelastic behavior is introduced that affects solely the pure shear part of the behavior. We show that both characteristics can be easily embedded into the aforementioned formulation. Among others, the occurrence of tertiary creep is made possible to predict. It is otherwise found that the predicted debonding path always propagates along the direction of the fibres in agreement with many experimental observations found in the literature. On the numerical side, the algorithmic treatment of debonding is independent of the one for viscoelasticity. This renders the implementation within the context of the finite element method very easy.  相似文献   

3.
Elastic buckling of layered/fibre reinforced composites is investigated. Assuming the existence of both shear and transverse modes of failure, the fibre is analysed as a layer embedded in a matrix. Interacting stresses, acting at the interfaces are determined from an exact derived stress field in the matrix. It is shown that buckling can occur only in the shear buckling mode and that the transverse buckling mode is spurious. As opposed to the well known Rosen shear buckling mode solution (predicated on an infinite buckling wavelength), shear buckling is shown to exist under two régimes: buckling of dilute composites with finite wavelengths and buckling of non-dilute composites with infinite wavelengths. Based on the analysis, a model is constructed which defines the fibre concentration at which the transition between the two régimes occurs. The buckling strains are shown to be (approximately) constant for dilute composites and, in the case of very stiff fibres, to have realistic values compatible with elastic behaviour. For the case of non-dilute composites, the strains are found to be in agreement with those given by the Rosen shear buckling solution. Numerical results for the buckling strains and stresses are presented and compared with the Rosen solution. These reveal that the Rosen solution is valid only for the case of non-dilute composites. The investigation demonstrates that elastic buckling may be a dominant failure mechanism of composites consisting of very stiff fibres fabricated in the framework of nano-technology.  相似文献   

4.
A numerical simulation for predicting the axial creep-rupture lifetime of continuous fiber-reinforced metal matrix composites is proposed, based on the finite element method. The simulation model is composed of line elements representing the fibers and four-node isoparametric plane elements representing the matrix. While the fibers behave as an elastic body at all times, the matrix behaves as an elasto-plastic body at the loading process and an elasto-plastic creep body at the creep process. It is further assumed in the simulation that the fibers are fractured not only in stress criterion but time-dependently with random nature. Simulation results were compared with the creep-rupture lifetime data of a boron-aluminum composite with 10% fiber volume fraction experimentally obtained. The simulated creep-rupture lifetimes agreed well with the averages of the experimental data. The proposed simulation is further carried out to predict a possibility of creep-rupture for the composite without time-dependent fiber breakage. It is finally concluded that the creep-rupture of a boron-aluminum composite is closely related with the shear stress relaxation occurring in the matrix as well as time-dependent fiber breakage.  相似文献   

5.
Elastic properties of model random three-dimensional open-cell solids   总被引:1,自引:0,他引:1  
Most cellular solids are random materials, while practically all theoretical structure-property relations are for periodic models. To generate theoretical results for random models the finite element method (FEM) was used to study the elastic properties of open-cell solids. We have computed the density (ρ) and microstructure dependence of the Young's modulus (E) and Poisson's ratio (ν) for four different isotropic random models. The models were based on Voronoi tessellations, level-cut Gaussian random fields, and nearest neighbour node-bond rules. These models were chosen to broadly represent the structure of foamed solids and other (non-foamed) cellular materials. At low densities, the Young's modulus can be described by the relation Eρn. The exponent n and constant of proportionality depend on microstructure. We find 1.3<n<3, indicating a more complex dependence than indicated by periodic cell theories, which predict n=1 or 2. The observed variance in the exponent was found to be consistent with experimental data. At low densities we found that ν≈0.25 for three of the four models studied. In contrast, the Voronoi tessellation, which is a common model of foams, became approximately incompressible (ν≈0.5). This behaviour is not commonly observed experimentally. Our studies showed the result was robust to polydispersity and that a relatively large number (15%) of the bonds must be broken to significantly reduce the low-density Poission's ratio to ν≈0.33.  相似文献   

6.
The compressive strength of unidirectional long fibre composites is predicted for plastic microbuckling from a random two-dimensional distribution of fibre waviness. The effect of the physical size of waviness is addressed by using couple stress theory, with the fibre bending resistance scaling with the fibre diameter d. The predicted statistical distribution of compressive strength is found using a Monte Carlo method. An ensemble of fibre waviness profiles is generated from an assumed spectral density of waviness and the compressive strength for each such realisation is calculated directly by the finite element method. The average predicted strength agrees reasonably with practical values, confirming the hypothesis that microbuckles can be initiated by fibre misalignment. It is found that the probability distribution of strength is well matched by a Weibull fit, and the dependence of the Weibull parameters upon the spectral density of waviness is determined. For the practical range of fibre distributions considered, it is concluded that the strength depends mainly upon the root mean square amplitude of fibre misalignment, with the shape of the power spectral density function playing only a minor role. An engineering model for predicting the compressive strength is proposed, akin to weakest link theory for materials containing flaws. A specimen containing randomly distributed waviness is examined to locate regions of high-fibre misalignment. The strength of each of these weak regions is estimated from a look-up table derived from calculations with idealised circular or elliptical patches of waviness. The strength of the composite is given by the failure stress associated with the weakest such patch. For random distributions of waviness, the predictions using this engineering approach are in good agreement with the direct calculations of strength using the finite element method.  相似文献   

7.
Mechanical properties of nanostructure of biological materials   总被引:2,自引:0,他引:2  
Natural biological materials such as bone, teeth and nacre are nanocomposites of protein and mineral with superior strength. It is quite a marvel that nature produces hard and tough materials out of protein as soft as human skin and mineral as brittle as classroom chalk. What are the secrets of nature? Can we learn from this to produce bio-inspired materials in the laboratory? These questions have motivated us to investigate the mechanics of protein-mineral nanocomposite structure. Large aspect ratios and a staggered alignment of mineral platelets are found to be the key factors contributing to the large stiffness of biomaterials. A tension-shear chain (TSC) model of biological nanostructure reveals that the strength of biomaterials hinges upon optimizing the tensile strength of the mineral crystals. As the size of the mineral crystals is reduced to nanoscale, they become insensitive to flaws with strength approaching the theoretical strength of atomic bonds. The optimized tensile strength of mineral crystals thus allows a large amount of fracture energy to be dissipated in protein via shear deformation and consequently enhances the fracture toughness of biocomposites. We derive viscoelastic properties of the protein-mineral nanostructure and show that the toughness of biocomposite can be further enhanced by the viscoelastic properties of protein.  相似文献   

8.
A strain gradient dependent crystal plasticity approach is used to model the constitutive behaviour of polycrystal FCC metals under large plastic deformation. Material points are considered as aggregates of grains, subdivided into several fictitious grain fractions: a single crystal volume element stands for the grain interior whereas grain boundaries are represented by bi-crystal volume elements, each having the crystallographic lattice orientations of its adjacent crystals. A relaxed Taylor-like interaction law is used for the transition from the local to the global scale. It is relaxed with respect to the bi-crystals, providing compatibility and stress equilibrium at their internal interface. During loading, the bi-crystal boundaries deform dissimilar to the associated grain interior. Arising from this heterogeneity, a geometrically necessary dislocation (GND) density can be computed, which is required to restore compatibility of the crystallographic lattice. This effect provides a physically based method to account for the additional hardening as introduced by the GNDs, the magnitude of which is related to the grain size. Hence, a scale-dependent response is obtained, for which the numerical simulations predict a mechanical behaviour corresponding to the Hall-Petch effect. Compared to a full-scale finite element model reported in the literature, the present polycrystalline crystal plasticity model is of equal quality yet much more efficient from a computational point of view for simulating uniaxial tension experiments with various grain sizes.  相似文献   

9.
Micro-macro scale transition theories were developed to model the inelastic behaviour of polycrystals starting from the local behaviour of the grains. The anisotropy of the plastic behaviour of polycrystalline metals was essentially explained by taking into account the crystallographic textures. Issues like plastic heterogeneities due to grain size dispersion, involving the Hall-Petch mechanism at the grain scale, were often not taken into account, and, only the role of a mean grain size was investigated in the literature. Here, both sources of plastic heterogeneities are studied using: (i) experimental data from EBSD measurements and tensile tests, and, (ii) a self-consistent model devoted to elastic-viscoplastic heterogeneous materials. The results of the model are applied to two different industrial IF steels with similar global orientation distributions functions but different mean grain sizes and grain size distributions. The coupled role of grain size distributions and crystallographic textures on the overall tensile behaviour, local stresses and strains, stored energy and overall plastic anisotropy (Lankford coefficients) is deeply analyzed by considering different other possible correlations between crystallographic orientations and grain sizes from the measured data.  相似文献   

10.
Boundary-layer effects on the effective response of fibre-reinforced media are analysed. The distribution of the fibres is assumed random. A methodology is presented for obtaining non-local effective constitutive operators in the vicinity of a boundary. These relate ensemble averaged stress to ensemble averaged strain. Operators are also developed which re-construct the local fields from their ensemble averages. These require information on the local configuration of the medium. Complete information is likely not to be available, but averages of these operators conditional upon any given local information generate corresponding conditional averages of the fields. Explicit implementation is performed within the framework of an approximation of Hashin-Shtrikman type. Two types of geometry are considered in examples: a half-space and a crack in an infinite heterogeneous medium. These are representative, asymptotically, of the field in the vicinity of any smooth boundary, and in the vicinity of a crack tip, respectively. Results have been obtained for the case of anti-plane deformation, realized by the imposition of either Dirichlet or Neumann conditions on the boundary; those for the Neumann condition are presented and discussed explicitly. The stresses in both fibre and matrix adjacent to a crack tip are shown to differ substantially from the values that would be predicted by ordinary homogenization.  相似文献   

11.
In this paper we present a unified treatment of composite ellipsoid assemblages in the setting of uncoupled phenomena like conductivity and elasticity and coupled phenomena like thermoelectricity and piezomagnetoelectricity. The building block of this microgeometry is a confocal ellipsoidal particle consisting of a (possibly void) core and a coating. All space is filled up with such units which have different sizes but possess the same aspect ratios. The confocal ellipsoids may have the same orientation in space or may be randomly oriented. The resulting microgeometry simulates two-phase composites in which the reinforcing components are short fibers or elongated particles. Our main interest is in obtaining information of an exact nature on the effective moduli of this microgeometry whose effective tensor symmetry structure depends on the packing mode of the coated ellipsoids. This information will sometimes be complete like the full effective thermoelectric tensor of an assemblage which contains aligned ellipsoids in which the coating is isotropic and the core is arbitrarily anisotropic. In the majority of the cases however the maximum achievable exact information will be only partial and will appear in the form of certain exact relations between the effective moduli of the microgeometry. These exact relations are obtained from exact solutions for the fields in the microstructure for a certain set of loading conditions. In all the considered cases an isotropic coating can be combined with a fully arbitrary core. This covers the most important physical case of anisotropic fibers in an isotropic matrix. Allowing anisotropy in the coating requires the fulfillment of certain constraint conditions between its moduli. Even though in this case the presence of such constraint conditions may render the anisotropic coating material hypothetical, the value of the derived solutions remains since they still provide benchmark comparisons for approximate and numerical treatments. The remarkable feature of the general analysis which covers all treated uncoupled and coupled phenomena is that it is developed solely on the basis of potential solutions of the conduction problem in the same microgeometry.  相似文献   

12.
This work presents a new constitutive model for the effective response of fiber-reinforced elastomers at finite strains. The matrix and fiber phases are assumed to be incompressible, isotropic, hyperelastic solids. Furthermore, the fibers are taken to be perfectly aligned and distributed randomly and isotropically in the transverse plane, leading to overall transversely isotropic behavior for the composite. The model is derived by means of the “second-order” homogenization theory, which makes use of suitably designed variational principles utilizing the idea of a “linear comparison composite.” Compared to other constitutive models that have been proposed thus far for this class of materials, the present model has the distinguishing feature that it allows consideration of behaviors for the constituent phases that are more general than Neo-Hookean, while still being able to account directly for the shape, orientation, and distribution of the fibers. In addition, the proposed model has the merit that it recovers a known exact solution for the special case of incompressible Neo-Hookean phases, as well as some other known exact solutions for more general constituents under special loading conditions.  相似文献   

13.
Granular materials are a simple example of a Cosserat continuum in that the average particle rotations may differ from the rotation of the average deformation. In the absence of couple stress, this difference insures that the stress is symmetric. This has been shown in theories that assume that the displacement at particle contacts is given by the average deformation and spin. Here, we indicate how the difference between the average rotation of the particles and the average rotation of the deformation can be determined when fluctuations in particle displacements and rotations satisfy local force and moment equilibria in a random aggregate of identical spheres. The predictions based on this model are in better agreement with numerical simulation than that given by the simple average strain theory.  相似文献   

14.
Experiments with transmission electron microscopy have shown that in a strong electron beam the contrast of dislocations may gradually disappear at an incoherent interface between a metal thin film and an amorphous substrate. There are reasons to believe that this phenomenon is caused by radiation-induced dislocation core spreading at the interface. A quantitative model accounting for this effect will be necessary for a better understanding of dislocation structures and plastic deformation in metal thin films. As a first step toward this objective, we develop a number of mathematical solutions for dislocation core spreading at an incoherent interface. For simplicity, we consider screw dislocations, and consider the interface to be characterized by a shear adhesive strength, τ0, below which no core spreading occurs, and above which spreading takes place in a viscous manner. We determine the final equilibrium core width and the rate of core spreading for single or planar arrays of dislocations in a homogeneous bulk material or at the interface between a thin film and a semi-infinite substrate where the film and substrate may have the same, or different, elastic constants. Some of our solutions are analytic and others are based on an implicit finite difference method with a Gauss-Chebyshev quadrature scheme. The phenomenon of dislocation core spreading is expected to have a dramatic effect on the strength of crystalline films deposited on amorphous substrates.  相似文献   

15.
An elastoplastic damage model considering progressive imperfect interface is proposed to predict the effective elastoplastic behavior and multi-level damage progression in fiber-reinforced metal matrix composites (FRMMCs) under transverse loading. The modified Eshelby’s tensor for a cylindrical inclusion with slightly weakened interface is adopted to model fibers having mild or severe imperfect interfaces [Lee, H.K., Pyo, S.H., 2009. A 3D-damage model for fiber-reinforced brittle composites with microcracks and imperfect interfaces. J. Eng. Mech. ASCE. doi:10.1061/(ASCE)EM.1943-7889.0000039]. An elastoplastic model is derived micromechanically on the basis of the ensemble-volume averaging procedure and the first-order effects of eigenstrains. A multi-level damage model [Lee, H.K., Pyo, S.H., 2008a. Multi-level modeling of effective elastic behavior and progressive weakened interface in particulate composites. Compos. Sci. Technol. 68, 387–397] in accordance with the Weibull’s probabilistic function is then incorporated into the elastoplastic multi-level damage model to describe the sequential, progressive imperfect interface in the composites. Numerical examples corresponding to uniaxial and biaxial transverse tensile loadings are solved to illustrate the potential of the proposed micromechanical framework. A series of parametric analysis are carried out to investigate the influence of model parameters on the progression of imperfect interface in the composites. Furthermore, a comparison between the present prediction and experimental data in the literature is made to assess the capability of the proposed micromechanical framework.  相似文献   

16.
Single crystal plasticity based on a representative characteristic length is proposed and introduced into a homogenization approach based on finite element analyses, which are applied to characterization of distinctive yielding behaviors of polycrystalline metals, yield-point elongation, and grain size strengthening. The computational manner for an implicit stress update is derived with the framework of a standard multi-surface plasticity at finite strain, where the evolution of the characteristic lengths are numerically converted from the accumulated slips of all of slip systems by exploiting the mathematical feature of the characteristic length as the intermediate function of the plastic internal variables. Furthermore, a constitutive model for a single crystal reproduces the stress–strain curve divided into three parts. Using two-scale finite element analysis, the macroscopic stress–strain response with yield-point elongation under a situation of low dislocation density is reproduced. Finally, the grain size effect on the yield strength is analyzed with modeling of the grain boundary in the context of the proposed constitutive model and is discussed from both macroscopic and microscopic views.  相似文献   

17.
Predictions are made for the size effect on strength of a random, isotropic two-phase composite. Each phase is treated as an isotropic, elastic-plastic solid, with a response described by a modified deformation theory version of the Fleck-Hutchinson strain gradient plasticity formulation (Fleck and Hutchinson, J. Mech. Phys. Solids 49 (2001) 2245). The essential feature of the new theory is that the plastic strain tensor is treated as a primary unknown on the same footing as the displacement. Minimum principles for the energy and for the complementary energy are stated for a composite, and these lead directly to elementary bounds analogous to those of Reuss and Voigt. For the case of a linear hardening solid, Hashin-Shtrikman bounds and self-consistent estimates are derived. A non-linear variational principle is constructed by generalising that of Ponte Castañeda (J. Mech. Phys. Solids 40 (1992) 1757). The minimum principle is used to derive an upper bound, a lower estimate and a self-consistent estimate for the overall plastic response of a statistically homogeneous and isotropic strain gradient composite. Sample numerical calculations are performed to explore the dependence of the macroscopic uniaxial response upon the size scale of the microstructure, and upon the relative volume fraction of the two phases.  相似文献   

18.
Despite their high performances, composites with polymer matrix are very sensible to the increase in temperature and moisture concentration. During long years of services, both phenomena cause a critical transient hygrothermal transverse stresses, particularly at first-ply; i.e. at two edges of the composite plates. Therefore, significant degradation of hygrothermal characteristics and ultimate strengths of materials are occurred. To get an explicit relation between the durability and the damage probability of the composite, quadratic failure criterion in stress space is used. This criterion enables us to find a direct relation between transient hygrothermal stresses produced by the increase in temperature and moisture concentration and the ultimate strengths. It is necessary to calculate the strength ratio R from initial to saturation time for each condition imposed of temperature and moisture concentration. The strength ratio gives a point of view on the damage probability of the composite plates, where the rupture occurs if R = 1. In order to limit the consequences of simultaneous effects of temperature and moisture concentration, unidirectional hybrid composites in graphite epoxy was proposed. To reach this aim, hygrothermal transverse stresses are calculated through the thickness of unidirectional hybrid plate. Finally, the strength ratio was evaluated along of the plate with a gradual increase in temperature and moisture concentration.  相似文献   

19.
When copper is deformed to large strains its texture and microstructure change drastically, leading to plastic anisotropy and extended transients when it is reloaded along a different strain path. For predicting these transients, we develop a constitutive model for polycrystalline metals that incorporates texture and grain microstructure. The directional anisotropy in the single crystals is considered to be induced by variable latent hardening associated with cross-slip, cut-through of planar dislocation walls, and dislocation-based reversal mechanisms. These effects are introduced in a crystallographic hardening model which is, in turn, implemented into a polycrystal model. This approach successfully explains the flow response of OFHC Cu pre-loaded in tension (compression) and reloaded in tension (compression), and the response of OFHC Cu severely strained in shear by equal channel angular extrusion and subsequently compressed in each of the three orthogonal directions. This new theoretical framework applies to arbitrary strain path changes, and is fully anisotropic.  相似文献   

20.
In Part I of this work, an improved “second-order” homogenization theory was developed. This new theory makes use of generalized secant moduli that are intermediate between the standard secant and tangent moduli of the nonlinear phases, and that depend not only on the averages, or first-moments of the fields in the phases, but also on the second-moments of the field fluctuations, or phase covariance tensors. In this article, the theory, which is known to be exact to second-order in the heterogeneity contrast, is applied to the special cases of rigidly reinforced and porous materials. These are cases corresponding to infinite contrast where fairly explicit analytical expressions of the Hashin-Shtrikman and self-consistent-type may be generated for nonlinear composites. The results show that the new theory improves on the earlier theory (Ponte Castañeda, J. Mech. Phys. Solids 44 (1996) 827) in at least two ways. First, the new theory satisfies rigorous bounds, even near the percolation limit, where field fluctuations become important, and the earlier second-order theory had been found to fail. Second, the new theory predicts fully compressible behavior for porous materials with an incompressible matrix phase, where the earlier theory had also been found to fail. In addition, the new estimates are found to be in better agreement with numerical simulations available from the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号