首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Physico-chemical properties viz., density, viscosity, and refractive index at temperatures = (298.15, 303.15, and 308.15) K and the speed of sound at T = 298.15 K are measured for the binary mixtures of methylcyclohexane with ethanol, propan1-ol, propan-2-ol, butan-1-ol, 2-methyl-1-propanol, and 3-methyl-1-butanol over the entire range of mixture composition. From these data, excess molar volume, deviations in viscosity, molar refraction, speed of sound, and isentropic compressibility have been calculated. These results are fitted to the polynomial equation to derive the coefficients and standard errors. The experimental and calculated quantities are used to study the nature of mixing behaviours between the mixture components.  相似文献   

2.
The excess molar enthalpies and volumes have been determined for the binary system (water+octan-1-ol or +octan-2-ol) by means of direct calorimetric and densimetric measurements in the miscibility range. The experimental data were described through a Redlich-Kister type equation. For excess enthalpies a sigmoidal shape is predicted,while excess volumes are negative except for a little positive queue observed for(water+octan-1-ol) system at very low water content. Also the partial molar enthalpies of solution and the partial molar volumes of water in the two isomeric octanols at infinite dilution have been evaluated and discussed. A comparison is made between excess enthalpies and excess free energies calculated by the UNIFAC method. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Given the importance that enthalpic and entropic contributions have in the interplay between thermodynamics and self-assembly of aqueous amphiphile systems, the energetic characterisation of the system {water + 1-propoxypropan-2-ol (1-pp-2-ol)} at T = 298.15 K was made by directly measuring excess partial molar enthalpies of 1-pp-2-ol and water, over the entire composition range, at T = 298.15 K and atmospheric pressure. Derivatives of the partial molar properties with respect to the composition are used to improve the understanding of molecular interactions in the water-rich region. The present results were compared with those for the well-studied system {water + 2-butoxyethanol (nC4E1)}, the two amphiphiles being structural isomers.  相似文献   

4.
Densities, viscosities, and ultrasonic velocities of binary mixtures of trichloromethane with methanol, ethanol, propan-1-ol, and butan-1-ol have been measured over the entire range of composition, at (298.15 and 308.15) K and at atmospheric pressure. From the experimental values of density, viscosity, and ultrasonic velocity, the excess molar volumes (VE), deviations in viscosity (Δη), and deviations in isentropic compressibility (Δκs) have been calculated. The excess molar volumes, deviations in viscosity and deviations in isentropic compressibility have been fitted to the Redlich-Kister polynomial equation. The Jouyban-Acree model is used to correlate the experimental values of density, viscosity, and ultrasonic velocity.  相似文献   

5.
In this paper, excess thermodynamic functions have been computed from the measured values of density, viscosity, and refractive index at T = (298.15, 303.15, and 308.15) K, ultrasonic velocity at T = 298.15 K over the entire mixture composition range of (anisole with ethanol, propan-1-ol, propan-2-ol, butan-1-ol, pentan-1-ol, or 3-methyl butan-1-ol). Excess molar volume, VE has been calculated from densities, whereas deviations in viscosity, Δη, were computed from the measured viscosities. From ultrasonic velocities, isentropic compressibilities were calculated, from which deviations in isentropic compressibility, Δks have been computed. Lorenz-Lorentz mixture rule was used to compute molar refractivity, R from refractivity index data and from these data, deviations in molar refractivity, ΔR have been computed. Computed thermodynamic quantities have been fitted to Redlich and Kister polynomial equation to derive the coefficients and standard errors between experimental and predicted quantities. Intermolecular interactions between anisole and alkanols have been studied based on the computed excess thermodynamic quantities.  相似文献   

6.
Excess molar enthalpies for the ternary system {x1 2-methoxy-2-methylpropane (MTBE) + x2 1-pentanol + (1  x1  x2) hexane} and the involved binary mixture {x 1-pentanol + (1  x) hexane}, have been measured at T = 298.15 K and atmospheric pressure over the whole composition range. We are not aware of the existence of previous experimental measurement of the excess enthalpy for the ternary mixture under study in the literature currently available. Values of the excess molar enthalpies were measured using a Calvet microcalorimeter. The results were fitted by means of different variable degree polynomials. The ternary contribution to the excess enthalpy was correlated with the equation due to Verdes et al. (2004), and the equation proposed by Myers–Scott (1963) was used to fit the experimental binary mixture measured in this work. Smooth representations of the results are presented and used to construct constant excess molar enthalpy contours on Roozeboom diagrams. The excess molar enthalpies for the binary and ternary system are positive over the whole range of composition. The binary mixture {x 1-pentanol + (1  x) hexane} is asymmetric, with its maximum displace toward a high mole fraction of decane. The ternary contribution is also positive with the exception of a range located around the rich compositions of 1-pentanol, and the representation is asymmetric.Additionally, the group contribution model of the UNIFAC model, in the versions of Larsen et al. (1987) [18] and Gmehling et al. (1993) [19] was used to estimate values of binary and ternary excess enthalpy. The experimental results were used to test the predictive capability of several empirical expressions for estimating ternary properties from binary results.  相似文献   

7.
Using a flow-mixing calorimeter, excess molar enthalpies of 1,3-dioxolane, or 1,4-dioxane, with isomeric butanols were determined at the temperatures of 298.15 K and 313.15 K. All the studied systems show positive excess molar enthalpies. The results are compared with calculated values from the UNIFAC model.  相似文献   

8.
In view of industrial importance of binary {ethyl alcohol + (propan-1-ol/propan-2-ol)} mixtures, the densities (ρ) and refractive indices (n D ) of these alkanols mixtures were measured for different compositions at 303.15 K. Molar volumes (V m) and excess molar volumes (V E) of these binary mixtures were calculated from experimental density data of pure solvents and solvents mixtures. The measured refractive index and density data was used to calculate specific refractions (R D ), molar refractions (R M) and apparent molar refractions (R φ, i ) of binary mixtures. From mole fraction dependence of apparent molar refractions, the limiting apparent molar refractions (R φ, i ) of propan-1-ol and propan-2-ol have been determined. The graphical values of R φ, i for propan-1-ol and propan-2-ol were found to be 9.5664 and 7.405 cm3 mol?1 respectively. Structural changes, geometrical fittings and molecular interactions in binary mixtures of these alkanols have been discussed.  相似文献   

9.
The excess molar enthalpies HmE, for the mixtures (N-methyl-2-pyrrolidinone + ethanol, or pentan-1-ol, or hexan-1-ol, or heptan-1-ol, or octan-1-ol, or nonal-1-ol, or decan-1-ol, or undecan-1-ol) at T=298.15 K and atmospheric pressure have been obtained using flow calorimetry. Excess molar volumes at T=298.15 K and atmospheric pressure have also been determined for (N-methyl-2-pyrrolidinone + nonal-1-ol, or decan-1-ol, or undecan-1-ol) from density measurements using a vibrating tube densimeter. The experimental results have been correlated and compared with the results from the Flory–Benson–Treszczanowicz (FBT) theory and from the Extended Real Associated Solution (ERAS) model. The ERAS model accounts free volume effects according to the Flory–Patterson model and additionally association effects between the molecules involved. For the mixtures studied here the association effects arise from the self association of an alkan-1-ol molecules and also the cross-association of the proton of the alkan-1-ol with carbonyl oxygen of N-methyl-2-pyrrolidinone (NMP) molecule. The parameters adjusted to the mixtures properties are two cross-association parameters and the interaction parameter responsible for the exchange energy of the van der Waals interactions. Self-association parameters of the alcohols and NMP are taken from the literature.  相似文献   

10.
Excess molar enthalpies HE and excess molar volumes VE have been measured at 298.15 K and 0.1 MPa for the ternary mixture tetrahydrofuran (THF) + propan-1-ol (PrOH) + n-heptane including the three binary mixtures using flow calorimetry and a vibrating tube densitometer, respectively.

Molar excess Gibbs energies GE have been measured at 298.15 K using a static VLE apparatus equipped with a chromatographic sampling technique for the vapor phase as well as for the liquid phase. Experimental results have been compared with predictions of the ERAS model.  相似文献   


11.
Values of the density and speed of sound were measured for the ternary system (methyl tert-butyl ether + methylbenzene + butan-1-ol) within the temperature range (298.15 to 328.15) K at atmospheric pressure by a vibrating-tube densimeter DSA 5000. Two binary sub-systems were studied and published previously while the binary sub-system (methyl tert-butyl ether + butan-1-ol) is a new study in this work. Excess molar volume, adiabatic compressibility, and isobaric thermal expansivity were calculated from the experimental values of density and speed of sound. The excess quantities were correlated using the Redlich–Kister equation. The experimental excess molar volumes were analyzed by means of both the Extended Real Associated Solution (ERAS) model and the Peng–Robinson equation of state. The novelty of this work is the qualitative prediction of ternary excess molar volumes for the system containing auto-associative compound and two compounds that can hetero-associate. The combination of the ERAS model and Peng–Robinson equation of state could help to qualitatively estimate the real behavior of the studied systems because the experimental results lie between these two predictions.  相似文献   

12.
In this paper, densities, speeds of sound and refractive indexes of binary mixture of {(±)-linalool (1) + propan-1-ol (2)} at four temperatures (283.15, 298.15, 313.15, and 328.15) K and 0.1 MPa are reported over the whole composition range. These data were used to calculate excess molar volume, speed of sound deviation, excess isentropic compressibility, refractive index deviation, molar refraction, and molar refraction deviation at the four work temperatures. All magnitudes were fitted to the Redlich–Kister equation. Subsequently prediction of speed of sound and refractive index was carried out using several theoretical models or equations. On the other hand, the density of the same mixture was determined in the same temperature range at pressures from 20 MPa to 40 MPa. Four equation of state (Peng–Robinson, Patel–Teja, SAFT, PC-SAFT) were tested as predictive models of the PρT behavior. The best results were obtained by PC-SAFT, with an average absolute deviation of 0.83%.  相似文献   

13.
14.
Excess molar volumes VmEatT =  298.15 K and atmospheric pressure are reported for (N -methyl-2-pyrrolidinone  +  propan-2-ol, or butan-1-ol, or butan-2-ol, or 2-methylpropan-1-ol ). TheVmE have been calculated from measured values of density using the vibrating tube technique. The results are discussed in terms of the hydrogen bonding and other intermolecular association. Excess molar enthalpiesHmE at T =  298.15 K and atmospheric pressure are reported for (N -methyl-2-pyrrolidinone  +  propan-1-ol, or propan-2-ol, or butan-1-ol, or butan-2-ol, or 2-methylpropan-1-ol). The HmEhave been obtained using flow calorimetry. The experimental results have been correlated and compared with the results from the Extended Real Associated Solution (ERAS) theory. The parameters adjusted to the mixtures properties are two cross association parameters and the interaction parameter responsible for the exchange energy of the van der Waals interactions. Self-association parameters of the alcohols and NMP are taken from the literature.  相似文献   

15.
《Fluid Phase Equilibria》2006,244(1):62-67
Excess molar enthalpies for the ternary system 1,4-dioxane (1) + n-octane (2) + cyclohexane (3) and for the three constituent binary systems have been measured by a Calvet microcalorimeter at 303.15 K and ambient pressure. The experimental binary results were fitted by the Redlich–Kister equation. The excess molar enthalpies of the ternary system were correlated using the Cibulka equation. The DISQUAC group contribution model was applied to predict the excess molar enthalpy for this mixture.  相似文献   

16.
In this work, we present the experimental measurements of excess molar enthalpies for the binary systems of dibutyl ether with different isomers of pentanol: 1-pentanol, 2-pentanol, 3-pentanol, 3-methyl-2-butanol, 2-methyl-1-butanol, 3-methyl-1-butanol and 2-methyl-2-butanol; all of them at T = (298.15 and 308.15) K and atmospheric pressure. Our goal was to determine the influence of the OH-group position on the different isomers of pentanol in the excess molar enthalpies of the binary systems studied. For this purpose we have analysed their experimental effective-reduced dipole moments. All values of excess molar enthalpies for the mixtures studied are positive whereas the results obtained for the effective-reduced dipole moments of the isomers of pentanol are similar.  相似文献   

17.
Densities and ultrasonic velocities of binary mixtures of decan-1-ol with 1,2-dichloroethane, 1,2-dibromoethane, and 1,1,2,2-tetrachloroethene have been measured over the entire range of composition at T = (293.15 and 313.15) K and at atmospheric pressure. From these results, the excess molar volumes, molar free volumes, excess molar isentropic compressibilities, limiting excess partial molar volumes, and isentropic compressibilities, intermolecular free lengths, and available volumes by three methods, thermal expansion coefficients, parameters related to space-filling ability, intermolecular free lengths, and molecular radii have been calculated. The experimental ultrasonic velocities have been analyzed in terms of the ideal mixture relations of Nomoto and Van Dael, Jacobson’s free length, Schaaff’s collision factor, Flory’s statistical, and Prigogine–Flory–Patterson theories and thermoacoustical parameters.  相似文献   

18.
P-T-x dependences are measured for the solutions of a propan-2-ol-2-methylpropan-1-ol binary system and the enthalpies and entropies of vaporization are determined. Dimerization in propan-2-ol and 2-methylpropan-1-ol is rationalized and the contribution from energy introduced by isostructural methyl groups to the enthalpy of vaporization is determined. Structural and energy analyses of solutions with networks of specific interactions are performed. The formation of heterodimers in solutions and vapors with reduced hydrogen bond energies and specific interactions with the 2s 2(C) unshared electron pairs of the carbon atoms of terminal methyl groups in ethyl and propyl fragments of propan-2-ol and 2-methylpropan-1-ol, respectively, is substantiated. The hydrogen bond energy of heterodimers is estimated.  相似文献   

19.
Isobaric vapor–liquid equilibrium data at 50, 75, and 94 kPa have been determined for the binary system ETBE + propan-1-ol, in the temperature range 325–368 K. The measurements were made in a vapor–liquid equilibrium still with circulation of both phases. Mixing volumes have been also determined from density measurements at 298.15 K and 101.3 kPa and, at the same temperature and pressure, the dependence of interfacial tension on concentration has been measured using the pendant drop technique. According to experimental results, the mixture presents positive deviation from ideal behavior and azeotropy is present at 75 and 94 kPa. No azeotrope was detected at 50 kPa. The mixing volumes of the system are negative over the whole mole fraction range, and the interfacial tensions exhibit negative deviation from the linear behavior. The activity coefficients and boiling points of the solutions were well correlated with the mole fraction using the Wohl, Wilson, NRTL, UNIQUAC equations. Excess volume data and interfacial tensions were correlated using the Redlich–Kister model.  相似文献   

20.
Molar excess volumes, VE, molar excess enthalpies, HE, and speeds of sound data, u, of pyrrolidin-2-one (i) + ethanol or propan-1-ol or propan-2-ol or butan-1-ol (j) binary mixtures have been determined over entire composition range at 308.15 K. The observed speeds of sound data have been utilized to predict excess isentropic compressibilities, of the investigated binary mixtures. The observed excess thermodynamic properties VE, HE and have been analyzed in terms of Graph theory. The analysis of VE data by the Graph theory suggests that pyrrolidin-2-one exists mainly as a mixture of cyclic and open dimer; ethanol as a mixture of dimer and trimer; butan-1-ol and propan-2-ol as mixture of monomer and dimer and propan-1-ol as a dimer in the pure state, and their mixtures contain 1:1 molecular complex. The IR studies lend additional credence to the nature and extent of interactions for the proposed molecular entities in the mixtures. Also, it has been observed that VE, HE and values predicted by the Graph theory compare well to with their corresponding experimental values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号