首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The (solid + liquid) phase equilibria of the ternary systems (CsBr + LnBr3 + H2O) (Ln = Pr, Nd, Sm) at T = 298.2 K were studied by the isothermal solubility method. The solid phases formed in the systems were determined by the Schreinemakers wet residues technique, and the corresponding phase diagrams were constructed based on the measured data. Each of the phase diagrams, with two invariant points, three univariant curves, and three crystallization regions corresponding to CsBr, Cs2LnBr5·10H2O and LnBr3·nH2O (n = 6, 7), respectively, belongs to the same category. The new solid phase compounds Cs2LnBr5·10H2O are incongruently soluble in water, and they were characterized by chemical analysis, XRD and TG-DTG techniques. The standard molar enthalpies of solution of Cs2PrBr5·10H2O, Cs2NdBr5·10H2O and Cs2SmBr5·10H2O in water were measured to be (52.49 ± 0.48) kJ · mol−1, (49.64 ± 0.49) kJ · mol−1 and (50.17 ± 0.48) kJ · mol−1 by microcalorimetry under the condition of infinite dilution, respectively, and their standard molar enthalpies of formation were determined as being −(4739.7 ± 1.4) kJ · mol−1, −(4728.4 ± 1.4) kJ · mol−1 and −(4724.4 ± 1.4) kJ · mol−1, respectively. The fluorescence excitation and emission spectra of Cs2PrBr5·10H2O, Cs2NdBr5·10H2O and Cs2SmBr5·10H2O were measured. The results show that the upconversion spectra of the three new solid phase compounds all exhibit a peak at 524 nm when excited at 785 nm.  相似文献   

2.
The vapor–liquid equilibria for methanol + glycerol and ethanol + glycerol systems were measured by a flow method at 493–573 K. The pressure conditions focused in this work were 3.03–11.02 MPa for methanol + glycerol system and 2.27–8.78 MPa for ethanol + glycerol system. The mole fractions of alcohol in vapor phase are close to unity at the pressures below 7.0 MPa for both systems. The pressures of liquid saturated lines of the liquid phase for methanol + glycerol and ethanol + glycerol systems are higher than that for the mixtures containing alcohol and biodiesel compound, methyl laurate or ethyl laurate.  相似文献   

3.
The solubilities, densities and refractive indices data for the four ternary systems ethylene glycol + MCl + H2O (M = Na, K, Rb, Cs) at different temperatures were measured, with mass fractions of ethylene glycol in the range of 0 to 1.0. In all cases, the presence of ethylene glycol significantly reduces the solubility of the salts in aqueous solution. The experimental data of density, refractive index and solubility of saturated solutions for these systems were correlated using polynomial equations as a function of the mass fraction of ethylene glycol. On the other hand, the refractive index and density of unsaturated solutions was also determined for the four ternary systems with varied unsaturated salt concentrations. Values for both the properties were correlated with the salt concentrations and proportions of ethylene glycol in the solutions.  相似文献   

4.
5.
The (vapour + liquid) equilibria (VLE) and (vapour + liquid + liquid) equilibria (VLLE) binary data from literature were correlated using the Peng–Robinson (PR) equation of state (EoS) with the Wong–Sandler mixing rule (WS). Two group contribution activity models were used in the PRWS: UNIFAC–PSRK and UNIFAC–Lby. The systems were successfully extrapolated from the binary systems to ternary and quaternary systems. Results indicate that the PRWS–UNIFAC–PSRK generally displays a better performance than the PRWS–UNIFAC–Lby.  相似文献   

6.
《Fluid Phase Equilibria》2004,224(1):39-46
The liquid–liquid equilibria of the system H3PO4–KCl–H2O–TBP was studied experimentally in the concentration range 0–6 mol/kg. The obtained data were modelled using the Pitzer equation for the aqueous phase and the Sergievskii–Dannus relationship for the organic phase. A fairly good agreement was observed between the model and the experimental data.  相似文献   

7.
For the equilibrium solid phases occurring in the systems: KCl?KBr?H2O, K2SO4?(NH4)2SO4?H2O and KNO3?NH4NO3?H2O, the concentration dependencies of differential solution enthalpies, Δsol H 2 for several crystallization paths, were measured. The limiting differential solution enthalpies, Δsol H 2 0 , were determined by extrapolation of the above dependencies to the ionic strength,I m 0 , corresponding to the appropriate binary solutions. For KCl?KBr?H2O system only, the clear dependence between Δsol H 2 0 andI m 0 values was found and discussed.  相似文献   

8.
Ternary (liquid + liquid) equilibria date for the (water + 2-propanol + α-pinene, or β-pinene) systems were measured at T = (293.15, 298.15, 303.15, and 308.15) K under atmospheric pressure. The experimental results were correlated using the extended and modified UNIQUAC models. The calculated results obtained from the modified UNIQUAC model successfully represent the experimental tie-line data. The temperature influence on liquid-phase equilibria was studied.  相似文献   

9.
(Ternary liquid + liquid) equilibria (tie-lines) of (water + acetone + α-pinene) at T = (288.15, 298.15, and 308.15) K and (water + acetone + β-pinene, or limonene) at T = 298.15 K have been measured. The experimental (ternary liquid + liquid) equilibrium data have been correlated successfully by the original UNIQUAC and modified UNIQUAC models. The modified UNIQUAC model reproduced accurately the experimental results for the (water + acetone + α-pinene) system at all the temperatures but fairly agreed with the experimental data for the (water + acetone + β-pinene, or limonene) systems.  相似文献   

10.
The isothermal and isobaric (vapour + liquid) equilibria for (cis-pinane + α-pinene) and (cis-pinane + 1-butanol) measured with an inclined ebulliometer are presented. The experimental results are analysed using the UNIQUAC equation with the temperature-dependence binary parameters with satisfactory results. Experimental vapour pressures of cis-pinane are also included.  相似文献   

11.
The (p, ρ, T) properties and apparent molar volumes V? of ZnBr2 in ethanol at temperatures (293.15 to 393.15) K and pressures up to p = 40 MPa are reported. The measurements were made with a recently developed vibration-tube densimeter. The system was calibrated using double-distilled water, methanol, ethanol, and aqueous NaCl solutions. The experiments were carried out at molalities of m = (0.05681, 0.16958, 0.30426, 0.43835, 0.93055, 1.49016, and 1.88723) mol · kg?1 using zinc bromide. An empirical correlation for the density of (ZnBr2 + C2H5OH) with pressure, temperature, and molality has been derived. This equation of state was used to calculate other volumetric properties such as isothermal compressibility, isobaric thermal expansibility, the differences in specific heat capacities at constant pressures and volumes, apparent molar volumes of ZnBr2 in ethanol, and partial molar volumes of both components.  相似文献   

12.
13.
(Vapor + liquid) equilibrium (VLE) data for a ternary mixture, namely {methanol + propan-1-ol + dimethyl carbonate (DMC)}, and four binary mixtures, namely an {alcohol (C3 or C4) + DMC}, containing the binary constituent mixtures of the ternary mixture, were measured at p = (40.00 to 93.32) kPa using a modified Swietoslawski-type ebulliometer. The experimental data for the binary systems were correlated using the Wilson model. The Wilson model was also applied to the ternary system to predict the VLE behavior using parameters from the binary mixtures. The modified UNIFAC (Dortmund) model was also tested for the predictions of the VLE behavior of the binary and ternary mixtures. In addition, the experimental VLE data for the ternary and constituent binary mixtures were correlated using the extended Redlich–Kister (ERK) model, which can completely represent the azeotropic points. For the ternary system, a comparison of the experimental and the predicted or correlated boiling points obtained using the Wilson and ERK models showed that the ERK model is more accurate. The valley line, i.e., the curve which divides the patterns of vapor–liquid tie lines, was found in the (methanol + propan-1-ol + DMC) system. This valley line could be represented by the ERK model. Finally, the composition profile for simple distillation of this ternary mixture was obtained by analysis of the residue curves from the estimated Wilson parameters of the constituent binary mixtures.  相似文献   

14.
A differential scanning calorimetry (d.s.c.) was used to determine binary (solid + liquid) phase equilibria (SLE) for four binary mixtures, viz. (n-nitrosodiphenylamine + diphenylamine), (2-nitrodiphenylamine + ethyl centralite), (2,4-dinitro-N-ethylaniline + methyl centralite), and (2,4-diphenylamine + 4,4′-dinitroethylcentralite). These compounds are used as stabilizers in gun powders and propellants. Results obtained with this technique are compared with those correlated by NRTL and ideal models. It was found out that all the systems are simple eutectic systems and deviations between experimental and predicted SLE results were observed.  相似文献   

15.
Vapor–liquid equilibria (VLE) for the n-hexane + 2-isopropoxyethanol and n-heptane + 2-isopropoxyethanol (at 60, 80, and 100 kPa) systems were measured. Two systems present positive deviations from ideal behavior. And the system n-heptane + 2-isopropoxyethanol shows a minimum boiling azeotrope at all pressures. Experimented data have been correlated with the two term virial equation for vapor-phase fugacity coefficients and the three suffix Margules equation, Wilson, NRTL, and UNIQUAC equations for liquid-phase activity coefficients. Experimental VLE data show excellent agreements with models.  相似文献   

16.
The phase equilibria in the ternary system NaCl–SrCl2–H2O at 288.15 K were studied with the isothermal equilibrium solution method. The phase diagram and refractive index diagram were plotted for this system at 288.15 K. The phase diagram contains one invariant solubility point, two univariant solubility curves, and two crystallization fields of NaCl and SrCl2 · 6H2O. The refractive indices of the equilibrium solution change regularly with w(NaCl) increase. The calculated refractive index data are in good agreement with the experimental data. Combining the experimental solubility data of the ternary system, the Pitzer binary parameters for NaCl at 288.15 K and SrCl2 at 298.15 K, the Pitzer mixing parameters θNa, Sr, ΨNa, Sr, Cl and the solubility equilibrium constants Ksp of solid phases existing in the ternary system at 288.15 K were fitted using the Pitzer and Harvie-Weare (HW) models. The mean activity coefficients of sodium chloride and strontium chloride, and the solubilities for the ternary system at 288.15 K were presented. A comparison between the calculated and measured solubilities shows that the predicted data agree well with the experimental results.  相似文献   

17.
18.
This paper describes a chemical model that calculates (solid + liquid) equilibria in the (m1Rb2SO4 + m2CoSO4)(aq), (m1Rb2SeO4 + m2CoSeO4)(aq), (m1Rb2SO4 + m2NiSO4)(aq), (m1Rb2SO4 + m2ZnSO4)(aq), (m1Rb2SeO4 + m2ZnSeO4)(aq), (m1Cs2SO4 + m2CoSO4)(aq), (m1Cs2SeO4 + m2CoSeO4)(aq), (m1Cs2SO4 + m2NiSO4)(aq), (m1Cs2SeO4 + m2NiSeO4)(aq), (m1Cs2SO4 + m2ZnSO4)(aq), and (m1Cs2SeO4 + m2ZnSeO4)(aq) systems, where m denotes molality at the temperature T=298.15 K. The Pitzer ion-interaction model has been used for thermodynamic analysis of the experimental osmotic and solubility data presented in the literature. The thermodynamic functions needed (binary and ternary parameters of ionic interaction, thermodynamic solubility products) have been calculated and the theoretical solubility isotherm has been plotted. The mixing parameters {θ(MN) and ψ(MNX)} have been chosen on the basis of the compositions of saturated ternary solutions and data on the binary solubility of the sulfate M2SO4. MSO4 · 6H2O double salts in water. To validate the mixing solutions model two different approaches have been used in evaluation of the ternary parameters: (I) preserving the same value of the binary mixing θ(MN) for the corresponding chloride, bromide, sulfate, and selenate systems with the same cations, and (II) with constant θ(MN) value (set equal to −0.05) for the all 11 sulfate and selenate systems. Very good agreement between experimentally determined and model predicted solubilities has been found. Important thermodynamic characteristics (thermodynamic solubility products, standard molar Gibbs free energy of formation) of the solid phases (simple salts, six sulfate – M2SO4 · MSO4 · 6H2O, and five selenate – M2SeO4 · MSeO4 · 6H2O – double salts) crystallizing in the systems under consideration are determined.  相似文献   

19.
Isobaric vapour–liquid equilibrium (VLE) measurements for the binary systems 4-methyl-2-pentanone + 1-butanol and 4-methyl-2-pentanone + 2-butanol are reported at 20 and 101.3 kPa. The system 4-methyl-2-pentanone + 1-butanol presents a minimum boiling point azeotrope at both pressures (20 and 101.3 kPa) and the system 4-methyl-2-pentanone + 2-butanol presents only a minimum boiling azeotrope at 20 kPa. In both systems, which deviate positively from ideal behaviour, the azeotropic composition is strongly dependent on pressure. The activity coefficients and boiling points of the solutions were correlated with its composition by the Wilson, UNIQUAC, and NRTL models for which the parameters are reported.  相似文献   

20.
Solid–liquid equilibria (SLE) measurements have been undertaken for carboxylic acid systems comprising (butyric acid + propionic or pentanoic acid) and (heptanoic acid + propionic or butyric or pentanoic or hexanoic acid) via a synthetic method using two complementary pieces of equipment. The measurements have been obtained at atmospheric pressure and over the temperature range of (225.6 to 270.7) K. All the acid mixtures exhibit a eutectic point in their respective phase diagrams, which have been determined experimentally. The estimated maximum uncertainties in the reported temperatures and compositions are ±1 K and ±0.0006 mole fraction, respectively. The experimental data have been satisfactorily correlated with the Wilson and NRTL activity coefficient models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号