首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Song W  Lin S  Sun G  Chen M  Yuan D 《色谱》2012,30(3):318-326
采用固相萃取-气相色谱-质谱联用技术,建立了河水和海水中87种农药(24种有机磷、15种有机氯、12种唑类、9种拟除虫菊酯类、5种氨基甲酸酯类、7种酰胺类及15种其他新型农药)的多残留同时分析方法。优化了影响分离效果和灵敏度的仪器参数,考察了固相萃取柱柱型及水样体积、pH、盐度的影响,采用NH2柱优化了净化效果,内标法和替代物法用于数据的质量控制。结果表明: 在最佳条件下,各目标农药的方法检出限为0.1~6.6 ng/L;以实际河水和海水为基底,在5 ng/L和20 ng/L的加标水平下,绝大多数目标农药的回收率为60%~120%,相对标准偏差(n=4)为0.01%~9.7%。该法灵敏、准确,已成功地应用于福建九龙江河口区表层水样中多种类农药的复合污染监测,检出包括5种有机磷类、3种酰胺类、4种唑类、3种氨基甲酸酯类、2种拟除虫菊酯类等农药20种。  相似文献   

2.
In this study, a new procedure, based on on-line solid-phase extraction (SPE) and analysis by liquid-chromatography-atmospheric pressure chemical ionization-mass spectrometry (LC-APCI-MS), has been developed for the simultaneous, multianalyte determination of 21 selected pesticides, phenols and phthalates in water. SPE was carried out on polymeric PLRP-s cartridges by percolating 20 mL-samples. For sample preconcentration, the performance of a prototype programmable field extraction system (PROFEXS) was evaluated against the commercial laboratory bench Prospekt system used for method development. The Profexs is designed for the automated on-site sampling, SPE preconcentration, and storage of up to 16 samples in SPE cartridges. These cartridges are further eluted and on-line analyzed with the Prospekt coupled to the chromatographic system. In the optimized method, where completely on-line SPE-LC-MS analysis of the samples is carried out with the Prospekt in the laboratory, detection limits lower than 100 ng/L, and satisfactory precision (relative standard deviations <25%) and accuracies (recovery percentages >75%) were obtained for most investigated compounds from the analysis of spiked Milli-Q water. The extraction efficiency achieved with the Profexs was comparable to that of the Prospekt for most compounds and somewhat lower for the most apolar analytes, probably due to adsorption on the pump filters. The completely on-line optimized method was applied to the analysis of surface water, ground water and drinking water from a waterworks in Barcelona. Some pesticides and phenols were found in both surface water and groundwater at ng/L or µg/L levels, but not in the final drinking water. Di(2-ethylhexyl)phthalate (DEHP) was present in all samples investigated, including blanks. To the author's knowledge, this is the first work describing the application of a fully automated on-line SPE-LC-MS method for the simultaneous analysis of pesticides, phenols, and phthalates in water, and the second one that examines the possibilities of the prototype Profexs for automated on-site SPE preconcentration of organic pollutants from water samples.  相似文献   

3.
建立了一种固相萃取/高效液相色谱-串联质谱(SPE/HPLC-MS/MS)同时检测水体中24种农药的分析方法。样品用乙腈提取后,经固相萃取小柱富集净化。以乙腈-0.1%(体积分数)甲酸水溶液为流动相梯度洗脱,在电喷雾离子源正离子模式下(ESI+)采用多反应监测(MRM)模式检测。结果显示,24种农药在1~200μg/L范围内具有良好的线性关系,相关系数(r2)均不小于0.998,水样中3个添加水平(5、20、100μg/L)下的回收率为65.9%~127.8%,相对标准偏差(RSD)为0.7%~14.2%;方法检出限为0.05~0.71 ng/L。采用该方法对大连地区10个河流入海口及2个水库的水样进行了检测,12个站位的样品中共检出10种农药,质量浓度为0.2~558.3 ng/L。结果表明,所建立的SPE/HPLC-MS/MS方法高效、灵敏、可靠,可用于实际水体中多种农药的同时检测。  相似文献   

4.
Liquid chromatography with electrospray mass spectrometry (LC–ESI-MS) instrumentation equipped with a single quadrupole mass filter has been used to determine several benzoylphenylurea insecticides (diflubenzuron, triflumuron, hexaflumuron, lufenuron and flufenoxuron). Chromatographic and MS parameters were optimised to obtain the best sensitivity and selectivity for all pesticides. Solid-phase extraction (SPE) using C18 cartridges was applied for preconcentration of pesticide trace levels in river water samples. Recoveries of benzoylphenylurea pesticides from spiked river water (0.01 and 0.025 μg L−1) were between 73 and 110% and detection limits were between 3.5 and 7.5 ng L−1. The applicability of the method to the determination of benzoylphenylurea insecticides in spiked cucumber, green beans, tomatoes and aubergines was evaluated. Samples were extracted into dichloromethane without any clean-up step. The limits of detection ranged from 1.0 to 3.2 ng mL−1 (0.68 and 2.13 μg kg−1 in the vegetable samples). Mean recoveries ranged from 79 to 114% at spiking levels of 0.01 and 0.03 mg kg−1. The method was applied to determine traces of benzoylphenylureas in both river water and vegetable samples with precision values lower than 10%. Interferences due to the matrix effect were overcome using matrix-matched standards.  相似文献   

5.
Graphene has great potentials for the use in sample preparation due to its ultra high specific surface area, superior chemical stability, and excellent thermal stability. In our work, a novel graphene‐based SPE disk was developed for separation and preconcentration of trace polycyclic aromatic hydrocarbons from environmental water samples. Based on the strong π–π stacking interaction between the analytes and graphene, the analytes extracted by graphene were eluted by cyclohexane and then determined by GC‐MS. Under the optimized conditions, high flow rate (30 mL/min) and sensitivity (0.84–13 ng/L) were achieved. The proposed method was successfully applied to the analysis of real environmental water samples with recoveries ranging from 72.8 to 106.2%. Furthermore, the property of anticlogging and reusability was also improved. This work reveals great potentials of graphene‐based SPE disk in environmental analytical.  相似文献   

6.
In this study, an extraction and preconcentration technique using solid-phase extraction (SPE) along with hollow fiber (HF) has been developed as an ultra-preconcentration technique for some triazole pesticides in aqueous samples. Triazole pesticides were employed as model compounds to assess the method and were monitored by gas chromatography-flame ionization detection (GC-FID). Initially, an aqueous solution of target analytes was passed through an RP-8 SPE cartridge and then the adsorbed analytes were eluted with μL amounts of toluene. The collected elute was slowly introduced into an HF that had one end blocked. This allowed precipitation inside the lumen and pores of the HF. Finally, the obtained HF was mounted on a home-made solid-phase microextraction syringe and entered into the GC injection port for thermal desorption-GC analysis. The effect of various experimental parameters including injection port temperature, desorption time, state of HF, washing solvent, elution solvent and its volume, sample volume, etc. were investigated for finding the optimum conditions. The calibration graphs were linear in the ranges of 2-1000 ng/mL (penconazole and hexaconazole), 5-1000 ng/mL (tebuconazole), 15-1000 ng/mL (triticonazole) and the detection limits (LODs) ranged from 0.6 to 4.5 ng/mL. The enhancement factors were in the range of 870-950. The relative standard deviations (RSD%) for five repeated experiments (C=250 ng/mL of each pesticide) varied from 4.5 to 8.7%. The relative recoveries obtained for analytes in grape juice samples, spiked with different levels of each pesticide, were in the range of 87-119%.  相似文献   

7.
SPE is a commonly applied technique for preconcentration of pesticides from water samples. Microwave‐assisted extraction (MAE) technique is the extraction applied for preconcentration of different compounds from solid samples. SPE coupled with MAE is capable of preconcentrating these compounds from water samples too. This investigation was aimed at improving the efficiency of atrazine, alachlor, and α‐cypermethrin pesticide extraction from the spiked water samples applying SPE followed by MAE. In this way, MAE served for elution of pesticides from C18‐extraction disks with solvent heated by microwave energy. Various elution conditions were tested for their effects on the extraction efficiency of the SPE–MAE combined technique. Several parameters, such as elution solvent volume (mL), elution temperature (°C), and duration of elution (min), affect the extraction efficiency of the SPE–MAE coupled system and need to be optimized for the selected pesticides. In order to develop a mathematical model, 15 experiments were performed in the central composite design. The equation was then used to predict recoveries of the pesticides under specific experimental conditions. Optimization of microwave extraction was accomplished using the genetic algorithm approach. Best results were achieved using 20 mL of ethanol at 60°C. Optimal hold time was 5 min and 24 s. The SPE–MAE combination was also compared with the conventional SPE extraction technique with elution of a nonpolar or a moderately polar compound with nonpolar solvents.  相似文献   

8.
Fung YS  Mak JL 《Electrophoresis》2001,22(11):2260-2269
A new analytical procedure using a two-step sample preconcentration (solid-phase extraction (SPE) and field-amplified sample stacking) prior to separation by micellar electrokinetic capillary chromatography was developed for the determination of 14 pesticides such as aldicarb, carbofuran, isoproturon, chlorotoluron, metolachlor, mecoprop, dichlorprop, MCPA, 2,4-D, methoxychlor, TDE, DDT, dieldrin, and DDE in drinking water. Good recoveries of pesticides were obtained using SPE with sample pH adjusted to 2-3. Field-amplified sample stacking was found to give enrichment factors up to 30-fold preconcentration of various pesticides under reversed polarity at -2 kV for 50 s. The optimized background electrolyte (BGE) consisted of 50 mM sodium dodecyl sulfate (SDS), 10 mM borate buffer, 15 mM beta-cyclodextrin (beta-CD), and 22% acetonitrile at pH 9.6, running was under 25 kV and detection at 202 nm. Good linearity was obtained for all pesticides with detection limits down to 0.04-0.46 ng/mL and a working range of 0.1-40 ng/mL. The repeatabilities of migration time and peak area were satisfactory with relative standard deviations (RSDs) between 0.66 and 13.6% and 4.1 and 28%, respectively. All pesticides except dieldrin were found to be detected at concentrations at least tenfold lower than the World Health Organization (WHO) guideline values. The analytical procedure developed offers an economic method for fast screening of multiple pesticide residues in drinking water for health protection. It had been applied to determine carbofuran and MCPA in agricultural run-off water samples, giving satisfactory repeatabilities of 10 and 12%, respectively, with n=5 for the determination of pesticides in contaminated water samples.  相似文献   

9.
Barron L  Paull B 《Talanta》2006,69(3):621-630
A new analytical procedure for the simultaneous determination of trace oxyhalides and haloacetic acids (HAs) in drinking water and aqueous soil extracts is described. The method uses micro-bore ion chromatography (IC) coupled with suppressed conductivity (SC) and electrospray ionization mass spectrometric detection (ESI-MS). The IC-SC-ESI-MS system included a secondary flow of 100% MeOH, which was added to the column eluate (post-suppressor) and resulted in a significant increase in sensitivity for all analytes. All ESI-MS parameters were optimized for HA analysis and sensitivity quantitatively compared to suppressed conductivity. Full analytical performance characteristics for the developed method are presented for monochloro-, monobromo-, dichloro-, dibromo-, trichloro-, bromochloro, chlorodifluoro-, trifluoro-, dichlorobromo- and dibromochloroacetic acid, as well as the oxyhalides iodate, bromate, chlorate and perchlorate. In the case of the HAs, an optimised 25-fold SPE preconcentration method meant all analytes could be readily detected well below the USEPA 60 μg/L regulatory limit using conductivity and/or ESI-MS. The IC-ESI-MS method was applied to the determination of oxyhalides and HAs in both soil extracts and drinking water samples. Soil samples were extracted using ultra pure water with subsequent determination of perchlorate at 1.68 μg/g of soil. A drinking water sample containing HAs was preconcentrated using LiChrolut EN solid phase extraction cartridges with subsequent sulphate and chloride removal. Total HAs were determined at 13 μg/L.  相似文献   

10.
The presence of pesticide residues in water is a huge worldwide concern. In this paper we described the development and validation of a new liquid chromatography tandem mass spectrometric (LC-MS/MS) method for both screening and quantification of pesticides in water samples. In the sample preparation stage, the samples were buffered to pH 7.0 and pre-concentrated on polymeric-based cartridges via solid-phase extraction (SPE). Highly sensitive detection was carried out with mobile phases containing only 5 mM ammonium formate (pH of 6.8) as an eluent additive and using only positive ionization mode in MS/MS instrument. Hence, only 200-fold sample enrichment was required to set a screening detection limit (SDL) and reporting limit (RL) of 10 ng/L. The confirmatory method was validated at 10 and 100 ng/L spiking levels. The apparent recoveries obtained from the matrix-matched calibration (5–500 ng/L) were within the acceptable range (60–120%), also the precision (relative standard deviation, RSD) was not higher than 20%. During the development, 480 pesticides were tested and 330 compounds fulfilled the requirements of validation. The method was successfully applied to proficiency test samples to evaluate its accuracy. Moreover, the method robustness test was carried out using higher sample volume (500 mL) followed by automated SPE enrichment. Finally, the method was used to analyze 20 real samples, in which some compounds were detected around 10 ng/L, but never exceeded the assay maximum level.  相似文献   

11.
固相萃取-GC/MS法测定水样中20种有机氯农药   总被引:2,自引:0,他引:2  
建立了用固相萃取小柱提取和净化、GC/MS定性定量同时测定水样中20种有机氯农药的方法。方法采用OasisHLB固相萃取小柱萃取富集水样,二氯甲烷洗脱,加入菲-d10作为内标,利用GC/MS进行定性定量,步骤简便,线性响应良好,干扰小,方法检出限为0.21~0.72 ng/L(按水样1L计),加标回收率为64.8%~122%,RSD为1.2%~11.0 %。成功利用该方法对广西实际河水样品进行了检测。结果表明方法可以同时满足环境水样中20种痕量有机氯农药的测定。  相似文献   

12.
SPE combined with dispersive liquid–liquid microextration was used for the extraction of ultra‐trace amounts of benzodiazepines (BZPs) including, diazepam, midazolam, and alprazolam, from ultra‐pure water, tap water, fruit juices, and urine samples. The analytes were adsorbed from large volume samples (60 mL) onto octadecyl silica SPE columns. After the elution of the desired compounds from sorbents with 2.0 mL acetone, 0.5 mL of eluent containing 40.0 μL chloroform was injected rapidly into 4.5 mL pure water. After extraction and centrifugation, 2 μL of the sedimented phase was injected into a GC equipped with a flame ionization detector. Several parameters affecting this process were investigated and optimized. Under the optimal conditions, LODs ranged from 0.02 to 0.05 μg/L, a linear dynamic range of 0.1–100 μg/L and relative SDs in the range of 4.4–10.7% were attained. Very high preconcentration factors ranging from 3895–7222 were achieved. The applicability of the method for the extraction of BZPs from different types of complicated matrices, such as tap water, fruit juices, and urine samples, was studied. The obtained results reveal that the proposed method is a good technique for the extraction and determination of BZPs in complex matrices.  相似文献   

13.
A rapid extraction and cleanup method using selective fabric phase sorptive extraction combined with gas chromatography and mass spectrometry has been developed and validated for the determination of broad polarity spectrum emerging pollutants, ethyl paraben, butyl paraben, diethyl phthalate, dibutyl phthalate, lidocaine, prilocaine, triclosan, and bisphenol A in various aqueous samples. Some important parameters of fabric phase sorptive extraction such as extraction time, matrix pH, stirring speed, type and volume of desorption solvent were investigated and optimized. Calibration curves were obtained in the concentration range 0.05–500 ng/mL. Under the optimum conditions, the limits of detection were in the range 0.009 –0.021 ng/mL. This method was validated by analyzing the compounds in spiked aqueous samples at different levels with recoveries of 93 to 99% and relative standard deviations of <6%. The developed method was applied for the determination of the emerging contaminants in tap water, municipal water, ground water, sewage water, and sludge water samples. The results demonstrate that fabric phase sorptive extraction has great potential in the preconcentration of trace analytes in complex matrix.  相似文献   

14.
In this work, NACE with UV detection is combined with SPE using multi-walled carbon nanotubes (MWCNT) as stationary phase to determine a group of seven pesticides (pirimicarb, pyrifenox, penconazol, carbendazim, cyromazine, pyrimethanil and cyprodinil) in mineral water samples using ametryn as internal standard. The optimized BGE, consisting of a mixture of MeOH and ACN (1:2 v/v) with 90 mM SDS and 20.5 mM HClO(4), was satisfactory to get a good resolution of the seven compounds in less than 13 min. On-line preconcentration was carried out by electrokinetic injection of the sample dissolved in 78:22 v/v MeOH/ACN, 1.11 mM HClO(4). Repeatability was studied for the same day (n=4), for nine different days (n=36) and for four different capillaries. RSD values were appropriate in all cases, i.e. in the range 4.3-9.4% between different capillaries. MWCNT of 10-15 nm od, 2-6 nm id and 0.1-10 mum length were used as SPE materials for the preconcentration of these pesticides from water samples. SPE parameters influencing the enrichment were optimized and the most favorable conditions were as follows: the amount of stationary phase, eluent, sample pH and sample volume were 40 mg MWCNT, 10 mL ACN and 10 mL dichloromethane containing 5% v/v formic acid, pH 8.0, and 750 mL, respectively. Mean recovery values ranged between 53 and 94% for Milli-Q water and between 47 and 93% for mineral waters (RSD values were in the range 2-16%). The method allowed the determination of these pesticides at concentrations below the maximum residue limits established by the European Union legislation (LOD in the range 27-58 ng/L). When the cost, amount and type of the carbon nanotubes used in this work are compared with those carbon nanotubes previously used in the literature it is clear that the proposed materials can be used as economical stationary phases, even cheaper than conventional SPE cartridges.  相似文献   

15.
应用固相萃取和气相色谱技术建立了河水和海水中36种常用农药(7种有机氯、11种有机磷、8种拟除虫菊酯、4种酰胺、2种苯胺和4种唑类杂环)的分析方法.采用Oasis HLB柱为水样富集萃取柱,考察了洗脱溶剂、上样体积、pH值和离子强度等因素对萃取效果的影响,采用无水硫酸钠和NH2柱进行除水和净化.目标农药在0.9 ~2 600 μg/L范围内线性良好;以PCB103为内标物,2,4,5,6-四氯间二甲苯、环氟菌胺和氟丙菊酯为替代物,实际河水、海水的加标回收率分别为62% ~124%、64% ~132%,相对标准偏差(n=3)分别为0.2% ~9.6%、0.1% ~12.2%;方法检出限为0.10 ~1.0 ng/L.方法快速、灵敏、准确,已成功应用于福建九龙江入海口表层水样的分析.  相似文献   

16.
Ultra performance liquid chromatography coupled to triple quadrupole tandem mass spectrometry (UPLC-MS/MS) has been applied for the accurate and rapid analysis of nine trace level priority pesticides in water. The UPLC technology, based on the use of columns packed with 1.7 microm porous particles combined with higher pressures than those conventionally applied in HPLC, enabled to improve in peak resolution, sensitivity and speed of analysis. UPLC chromatograms showed very sharp peaks with less than 2 s wide at the base, except for alachlor. This enhanced efficiency resulted in an increased separation speed of the whole UPLC-MS/MS procedure that required less than 5 min. Limits of detection, determined for 300 ml water samples after SPE preconcentration were in the range between 0.1 and 20 ng/L. The presence of matrix effects or ion suppression was checked by the obtaining of calibration curves in both pure solvent and matrix matched standards. Other performance characteristics of the method, such as linearity and precision were also satisfactory. Finally, the method was successfully applied to the analysis of two water samples from an inter-laboratory exercise.  相似文献   

17.
The purpose of this study is to demonstrate an application of 2-D high-performance planar chromatography-diode array detector (DAD) and HPLC-DAD after solid-phase extraction (SPE) for identification and quantitative analysis of pesticides (isoproturon, aziprotryne, hexazinone, flufenoxuron, methabenzthiazuron, procymidone, and α-cypermethrin) in Melissa officinalis L. (Labiatae) samples. The procedure described for the determination of compounds is inexpensive and can be applied to routine analysis of analytes in medical herbs' samples after preliminary cleanup and concentration by SPE. Average recoveries on C18 SPE cartridges of pesticides eluted with 5 mL tetrahydrofuran by the proposed HPLC-DAD method, before and after 2-D-high-performance planar chromatography separation of analytes from M. officinalis L. samples spiked with pesticide at a concentration level of 10 μg/g in plant material are presented. Method validation parameters for the quantification of pesticides by the proposed HPLC-DAD after SPE method are also presented.  相似文献   

18.
A rapid micro‐analytical multiresidue method was developed for analysis of pyrethroids (kadethrin K, cypermethrin C and permethrin P) in soil micro‐sample (200 mg). It uses on‐line flow‐through extraction of soil micro‐samples (packed into a short glass column) with a methanol‐aqueous citric acid buffer mixture, successive on‐line SPE preconcentration of analytes from the extract and on‐line RP‐HPLC analysis with UV photometric detection. The separation of pyrethroids is performed on a Purospher RP‐18e column with methanol/water as mobile phase. Effects of sorbent placed at the bottom of a short column holding the soil sample and different kinds of on‐line SPE columns were tested. Besides, the influence of volume of the effluent on the pyrethroids recovery was also studied. Calibration curves were linear over the range assayed from 0.01 to 0.2 μg/mL with correlation coefficients of linear regression (least‐squares method) in the range 0.998–0.999. Recovery studies were carried out at 0.25–1.00 μg/g dry soil fortification level and obtained recoveries were for K 81–84%, C 56–59% and for P 58–63%. Achieved LOD (confidence band) of studied pyrethroids were for large‐volume injection (1 mL) 4.5 ng K, 3.7 ng C, 3.6 ng P or 27 ng/g K, 32 ng/g C and 29 ng/g P in dry soil “solid sampling HPLC”.  相似文献   

19.
In the present work, a GC method with nitrogen-phosphorus detection (NPD) was developed for the simultaneous determination of eight organophosphorus pesticide (OPP) residues (i.e., ethoprofos, diazinon, chlorpyrifos-methyl, fenitrothion, malathion, chlorpyrifos, fenamiphos, and buprofezin) in water samples. Preconcentration of the water samples was carried out using an SPE procedure with multiwalled carbon nanotubes (MWCNTs) of 10-15 nm od, 2-6 nm id, and 0.1-10 microm length as stationary phase. Extraction parameters, such as the amount of MWCNTs, sample volume, pH, and type and amount of the eluent were optimized. The most favorable conditions were as follows: 40 mg MWCNTs, 800 mL water, pH 6.0, and 20 mL dichloromethane, respectively. The MWCNTs-SPE-GC-NPD method was applied to the determination of these pesticides in real water samples: mineral and ground water as well as run-off water from an agricultural area collected shortly before opening out onto the sea. A recovery study was developed with five consecutive extractions of the three types of water spiked at three concentration levels (n = 15). Mean recovery values were in the range of 75-116% for mineral water (RSD < 6.3%), 67-119% for ground water (RSD < 5.8%), and 57-81% for run-off waters (RSDs < 6.9%), except for fenamiphos (mean recovery values between 40 and 84% for the three types of waters, RSDs < 8.9%). LODs were in the low ng/L level (i.e., levels below the maximum residue limits (MRLs) established by the European Union (EU) legislation for these compounds in waters). The proposed method was also applied to the analysis of six water samples (two of each type: mineral, ground, and run-off waters) in which no residues of the selected pesticides were found. Results show that the MWCNTs used in this work have a high adsorbability of the pesticides under study. The main advantage of the use of these MWCNTs is their low cost when compared with those MWCNTs previously used in the literature and with conventional SPE cartridges.  相似文献   

20.
An on-line pre-concentration method for the analysis of five benzoylureas (diflubenzuron, triflumuron, hexaflumuron, lufenuron and flufenoxuron) in ground water samples was evaluated using two C(18) columns, and fluorescence detection after photochemical induced fluorescence (PIF) post-column derivatization. The trace enrichment was carried out with 35 mL of ground water modified with 15 mL of MeOH on a 50 mm x 4.6 mm I.D. first enrichment column (C-1) packed with 5 microm Hypersil Elite C(18). Retention properties of pesticides and humic acids usually contained in ground water were studied on C-1 at concentration levels ranging between 0.04 and 14.00 microg/L in water samples. The results obtained in this study show that the pesticides are pre-concentrated in the first short column while the humic acids contained in the ground water samples are eluted to waste. Pesticides recoveries ranged between 92.3 and 109.5%. The methodology proposed was used to determine benzoylureas in ground water samples at levels lower than 0.1 microg/L (maximum levels established by the European Union).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号