首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The topology of many modifications of elemental gallium is reflected in the large variety of metalloid Ga clusters that have been isolated as intermediates on the way from the metastable molecular GaX species (X=Cl, Br, I) by means of disproportionation to the bulk metal. Herein, we report the synthesis and characterization of the first metalloid cluster anion [Ga(18)(PtBu(2))(10)](3-) with the singular core topology that resembles the gallium high-pressure modification Ga-II. The stabilization of the cluster anion through ion-pair contacts with a chainlike "Li(4)Br(2) backbone" is discussed. Furthermore, the compound is discussed in context of the other metalloid clusters Ga(18)R(8) and Ga(22)R(8) (R=SitBu(3)) and their structural relation to the elemental modifications Ga-III and beta-Ga, respectively.  相似文献   

3.
Complete exchange : [M6X12] type cluster compounds with an octahedral M6 metal atom arrangement, which is completely surrounded by alcoholato ligands, were unknown until now. The first representatives are prepared containing a [Nb6(OR)12]4+ unit (R=CH3 or C2H5). They are accessible at elevated temperatures from strongly basic alcoholate solutions of [Nb6Cl12]2+‐containing precursors. C gray, H white, K turquoise, Nb blue, O red.

  相似文献   


4.
In addition to the two so far known types of metalloid Ga(22) clusters a new type is presented in two compounds containing the anions [Ga(22)Br[N(SiMe(3))(2)](10)Br(10)](3-) (1) and [Ga(22)Br(2)[N(SiMe(3))(2)](10)Br(10)](2-) (2). In both anions 10 Ga atoms of the icosahedral Ga(12) core are directly connected to further Ga atoms. The two remaining Ga atoms (top and bottom) of the Ga(12) icosahedron are bonded to one (1) and two Br atoms (2), respectively. The formation and structure of both compounds containing a slightly different average oxidation number of the Ga atoms is discussed and compared especially with regard to the Ga(84) cluster compound and similar metalloid Al(n) clusters. Finally, the consequences arising from the presence of two very similar but not identical Ga(22) cluster compounds are discussed and special consideration is given to the so far not understood physical properties (metallic conductivity and superconductivity) of the Ga(84) cluster compound.  相似文献   

5.
6.
A new type of double-butterfly [[Fe(2)(mu-CO)(CO)(6)](2)(mu-SZS-mu)](2-) (3), a dianion that has two mu-CO ligands, has been synthesized from dithiol HSZSH (Z=(CH(2))(4), CH(2)(CH(2)OCH(2))(1-3)CH(2)), [Fe(3)(CO)(12)], and Et(3)N in a molar ratio of 1:2:2 at room temperature. Interestingly, the in situ reactions of dianions 3 with various electrophiles affords a series of novel linear and macrocyclic butterfly Fe/E (E=S, Se) cluster complexes. For instance, while reactions of 3 with PhC(O)Cl and Ph(2)PCl give linear clusters [[Fe(2)(mu-PhCO)(CO)(6)](2)(mu-SZS-mu)] (4 a,b: Z=CH(2)(CH(2)OCH(2))(2,3)CH(2)) and [[Fe(2)(mu-Ph(2)P)(CO)(6)](2)(mu-SZS-mu)] (5 a,b: Z=CH(2)(CH(2)OCH(2))(2,3)CH(2)), reactions with CS(2) followed by treatment with monohalides RX or dihalides X-Y-X give both linear clusters [[Fe(2)(mu-RCS(2))(CO)(6)](2)(mu-SZS-mu)] (6 a-e: Z=CH(2)(CH(2)OCH(2))(1,2)CH(2); R=Me, PhCH(2), FeCp(CO)(2)) and macrocyclic clusters [[Fe(2)(CO)(6)](2)(mu-SZS-mu)(mu-CS(2)YCS(2)-mu)] (7 a-e: Z=(CH(2))(4), CH(2)(CH(2)OCH(2))(1-3)CH(2); Y=(CH(2))(2-4), 1,3,5-Me(CH(2))(2)C(6)H(3), 1,4-(CH(2))(2)C(6)H(4)). In addition, reactions of dianions 3 with [Fe(2)(mu-S(2))(CO)(6)] followed by treatment with RX or X-Y-X give linear clusters [[[Fe(2)(CO)(6)](2)(mu-RS)(mu(4)-S)](2)(mu-SZS-mu)] (8 a-c: Z=CH(2)(CH(2)OCH(2))(1,2)CH(2); R=Me, PhCH(2)) and macrocyclic clusters [[[Fe(2)(CO)(6)](2)(mu(4)-S)](2)(mu-SYS-mu)(mu-SZS-mu)] (9 a,b: Z=CH(2)(CH(2)OCH(2))(2,3)CH(2); Y=(CH(2))(4)), and reactions with SeCl(2) afford macrocycles [[Fe(2)(CO)(6)](2)(mu(4)-Se)(mu-SZS-mu)] (10 d: Z=CH(2)(CH(2)OCH(2))(3)CH(2)) and [[[Fe(2)(CO)(6)](2)(mu(4)-Se)](2)(mu-SZS-mu)(2)] (11 a-d: Z=(CH(2))(4), CH(2)(CH(2)OCH(2))(1-3)CH(2)). Production pathways have been suggested; these involve initial nucleophilic attacks by the Fe-centered dianions 3 at the corresponding electrophiles. All the products are new and have been characterized by combustion analysis and spectroscopy, and by X-ray diffraction techniques for 6 c, 7 d, 9 b, 10 d, and 11 c in particular. X-ray diffraction analyses revealed that the double-butterfly cluster core Fe(4)S(2)Se in 10 d is severely distorted in comparison to that in 11 c. In view of the Z chains in 10 a-c being shorter than the chain in 10 d, the double cluster core Fe(4)S(2)Se in 10 a-c would be expected to be even more severely distorted, a possible reason for why 10 a-c could not be formed.  相似文献   

7.
8.
9.
10.
11.
12.
13.
The synthesis, characterization, and theoretical investigation by means of quantum‐chemical calculations of an oligonuclear metal‐rich compound are presented. The reaction of homoleptic dinuclear palladium compound [Pd2(μ‐GaCp*)3(GaCp*)2] with ZnMe2 resulted in the formation of unprecedented ternary Pd/Ga/Zn compound [Pd2Zn6Ga2(Cp*)5(CH3)3] ( 1 ), which was analyzed by 1H and 13C NMR spectroscopy, MS, elemental analysis, and single‐crystal X‐ray diffraction. Compound 1 consisted of two Cs‐symmetric molecular isomers, as revealed by NMR spectroscopy, at which distinct site‐preferences related to the Ga and Zn positions were observed by quantum‐chemical calculations. Structural characterization of compound 1 showed significantly different coordination environments for both palladium centers. Whilst one Pd atom sat in the central of a bi‐capped trigonal prism, thereby resulting in a formal 18‐valence electron fragment, {Pd(ZnMe)2(ZnCp*)4(GaMe)}, the other Pd atom occupied one capping unit, thereby resulting in a highly unsaturated 12‐valence electron fragment, {Pd(GaCp*)}. The bonding situation, as determined by atoms‐in‐molecules analysis (AIM), NBO partial charges, and molecular orbital (MO) analysis, pointed out that significant Pd? Pd interactions had a large stake in the stabilization of this unusual molecule. The characterization and quantum‐chemical calculations of compound 1 revealed distinct similarities to related M/Zn/Ga Hume–Rothery intermetallic solid‐state compounds, such as Ga/Zn‐exchange reactions, the site‐preferences of the Zn/Ga positions, and direct M? M bonding, which contributes to the overall stability of the metal‐rich compound.  相似文献   

14.
Reaction of the [Ni(9)C(CO)(17)](2-) dianion with CdCl(2)2.5 H(2)O in THF affords the novel bimetallic Ni--Cd carbide carbonyl clusters [H(6-n)Ni(30)C(4)(CO)(34)(micro(5)-CdCl)(2)](n-) (n=3-6), which undergo several protonation-deprotonation equilibria in solution depending on the basicity of the solvent or upon addition of acids or bases. Although the occurrence in solution of these equilibria complicates the pertinent electrochemical studies on their electron-transfer activity, they clearly indicate that the clusters [H(6-n)Ni(30)C(4)(CO)(34)(micro(5)-CdCl)(2)](n-) (n=3-6), as well as the structurally related [H(6-n)Ni(34)C(4)(CO)(38)](n-) (n=4-6), undergo reversible or partially reversible redox processes and provide circumstantial and unambiguous evidence for the presence of hydrides for n=3, 4 and 5. Three of the [H(6-n)Ni(30)C(4)(CO)(34)(micro(5)-CdCl)(2)](n-) anions (n=4-6) have been structurally characterized in their [NMe(3)(CH(2)Ph)](4)[H(2)Ni(30)C(4)(CO)(34)(CdCl)(2)]2 COMe(2), [NEt(4)](5)[HNi(30)C(4)(CO)(34)(CdCl)(2)]2 MeCN and [NMe(4)](6)[Ni(30)C(4)(CO)(34)(CdCl)(2)]6 MeCN salts, respectively. All three anions display almost identical geometries and bonding parameters, probably because charge effects are minimized by delocalization over such a large metal carbonyl anion. Moreover, the Ni(30)C(4) core in these Ni-Cd carbide clusters is identical within experimental error to those present in the [HNi(34)C(4)(CO)(38)](5-) and [Ni(35)C(4)(CO)(39)](6-) species, suggesting that the stepwise assembly of their nickel carbide cores may represent a general pathway of growth of nickel polycarbide clusters. The fact that the [H(6-n)Ni(30)C(4)(CO)(34)(micro(5)-CdCl)(2)](n-)(n=4-6) anions display two valence electrons more than the structurally related [H(6-n)Ni(34)C(4)(CO)(38)](n-) (n=4-6) species has been rationalized by extended Hückel molecular orbital (EHMO) analysis.  相似文献   

15.
16.
17.
18.
19.
The double salts Rb(3)[Mo(6)Br(i) (7)Y(i)Br(a) (6)](Rb(3)[MoBr(6)])(3) (Y=Se, Te) result from the partial disproportionation of the Mo(6)Br(12) octahedral-cluster-based bromide, in the presence of corresponding chalcogenides and RbBr salt (crystal data: Rb(12)[MoBr(6)](3)[Mo(6)Br(i) (7)Te(i)Br(a) (6)] (1), Pm$\bar 3$m (No. 221), a=12.1558(2) A, Z=1, R(1)=0.028; wR(2)=0.050; Rb(12)[MoBr(6)](3)[Mo(6)Br(i) (7)Se(i)Br(a) (6)] (2), Pm$\bar 3$m, a=12.144(3) A, Z=1, R(1)=0.028; wR(2)=0.050). The structures of 1 and 2 are built up from [Mo(III)Br(6)](3-) complexes and [Mo(6)Br(i) (7)Y(i)Br(a) (6)](3-) cluster units characterised by a random distribution of seven bromine and one chalcogen ligands on all the eight inner positions that face cap the Mo(6) clusters. Such a distribution implies a static orientational disorder of the [Mo(6)Br(i) (7)Y(i)Br(a) (6)](3-) units around the origin of the unit cell. Close-packed anionic layers based on [Mo(III)Br(6)](3-) complexes and [Mo(6)Br(i) (7)Y(i)Br(a) (6)](3-) cluster units are stacked in the sequence ABC. This arrangement leads to very short Br(a)--Br(a) intercluster unit distances of 3.252 A, much lower than the sum of the van der Waals radii (3.70 A). The trivalent oxidation state of molybdenum in the Mo complexes and 24 valence electrons per Mo(6) cluster have been confirmed by magnetic susceptibility measurements. Salts 1 and 2 constitute the first examples of structurally characterised bromides containing discrete [Mo(III)Br(6)](3-) complexes obtained by means of solid-state synthesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号