首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 337 毫秒
1.
胶原作为一种新型生物材料,具有无毒,良好的生物相容性,生物可降解性及可吸收性,广泛用于皮肤创伤的治疗、骨缺损的修复、药物缓释的载体、止血敷料、组织工程支架材料等。但胶原在体内降解太快,不能与组织再生速度相匹配。有必要探讨胶原生物材料的改性方法,便于其更好  相似文献   

2.
The modifications induced in hairless mouse skin by chronic UV irradiation were investigated. Skin explant cultures were used to study UVA- and UVB-induced changes occurring in interstitial collagen (type I and type III) and fibronectin biosynthesis. To study the long-term effects, albino hairless mice were irradiated with UVA radiation alone from two sources with different spectral qualities or with UVB. UVA and UVB radiation produced a significant increase in the ratio of type III to type I collagen (more than 100% for UVA-irradiated skin and about 60% for UVB-irradiated skin) accompanied by a significantly increased fibronectin biosynthesis (50% or more in all irradiated groups). Irradiation with either UVA or UVB alone had no significant effect on the total collagen synthesis and resulted in only a slight decrease in the total collagen content of the skin determined as hydroxyproline. This decrease was significant only in the case of the group irradiated with UVA (xenon) (decrease of 25%, expressed as micrograms of hydroxyproline per milligram wet weight). A significant decrease in collagen hydroxylation (expressed as radioactive hydroxyproline/radioactive hydroxyproline plus proline in neosynthesized collagen) was observed of about 50% in skin irradiated with UVA (xenon) but not in UVB-treated skin. Several of the above modifications (increased fibronectin biosynthesis, increased collagen type III to type I ratio) correspond to the modifications observed during the aging of non-irradiated hairless mice. Therefore it appears that UV irradiation accelerates the modifications of extracellular matrix biosynthesis observed during aging.  相似文献   

3.
Abstract —This research was undertaken to demonstrate that the protein-bound chromophores in aged human lens can act as sensitizers for protein damage by UVA light. The water-insoluble (WI) proteins from pooled human and bovine lenses were solubilized by sonication in water and illuminated with UV light similar in output to that transmitted by the cornea. Analysis of the irradiated proteins showed a linear decrease in sulfiydryl groups with a 30% loss after 2 h. No loss was seen when native a-crystallin was irradiated under the same conditions. A 25% loss of histidine residues was also observed with the human lens WI fraction, and sodium dodecyl sulfate polyacrylamide gels indicated considerable protein cross-linking. Similar photodamage was seen with a WI fraction from old bovine lenses. While the data show the presence of UVA sensitizers, some histidine destruction and protein cross-linking were also obtained with a-crystallin and with lysozyme, which argue that part of the histidine loss in the human WISS was likely due to tryptophan acting as a sensitizer.
A preparation of human WI proteins was irradiated with a total of 200 J/cm2 of absorbed light at 10 nm intervals from 290 to 400 nm. Photodamage of cysteine SH groups (35%) and methionine (28Y0) was maximum at 330 nm and diminished linearly at longer wavelengths. The major loss of tryptophan (80%) occurred at 290 nm, but destruction was observed throughout the UVA range. Tyrosine was 35% destroyed at 290 nm but decreased sharply to only 50 at 330 nm. A constant loss of histidine (20%) was seen at all wavelengths from 290 to 360 nm, with some loss (7–8%) even at 400 nm. These action spectra show that the human lens WI fraction contains a collection of protein-bound UVA sensitizers that can cause protein photodamage similar to that seen in cataractous lenses.  相似文献   

4.
Abstract— Collagen was exposed to an ultraviolet (UV) lamp that emitted predominantly in the UVB range. The cross-linking of collagen type I and type IV by UV irradiation was observed. Amino acid analyses revealed that Tyr residues in both collagen types I and IV were decreased by irradiation. In collagen type IV, losses of His and Met residues were also observed. These losses of collagen type IV may be due to the degradation of Trp, which exists in collagen type IV and decreased drastically during UV irradiation. To clarify the mechanism of Tyr modification in both types of collagen, the degradation products of Tyr were analyzed. Dityrosine, which is a dimer of the Tyr residue, could not be detected in the acid hydrolysates of UV-irradiated collagen. However, 3,4-dihydroxyphenylalanine, DOPA, was detected in the hydrolysates using HPLC with an electrochemical detector. The amounts of DOPA in the acid hydrolysates of collagen exposed to UV light for 24 h were approximately 350 pmol/mg protein (collagen type IV) and 80 pmol/mg protein (collagen type I). The DOPA formed may partially contribute to photoaging of the skin.  相似文献   

5.
A preliminary study was undertaken to establish whether low-dose UV irradiation (UVB) affects calcium cell signaling in rabbit lens epithelia. In a suspension of lens epithelial cells (line NN1003A), changes in intracellular Ca2+ were measured by Fura-2 fluorescence in response to exogenously added ATP. The cellular response to ATP, referred to as the calcium signal, is characterized by a brief increase and subsequent decrease in cytosolic Ca2+ levels. Ultraviolet B irradiation (1.8-9 mJ/cm2) was found to reduce the magnitude of the Ca2+ signal in a dose-dependent manner. A 5 min UVB exposure (9 mJ/cm2) completely altered the biphasic nature of the calcium signal, causing only an immediate and steady rise in cytosol Ca2+ levels. Lower fluences of UVB irradiation (2 min exposure times or 3.6 mJ/cm2) induced a 50% reduction in the calcium signal. When irradiated cells were returned to culture for 3 h after irradiation, calcium signals induced by ATP were normal. In view of the photooxidative nature of UVB irradiation, the oxidative state of cells was assessed by measuring glutathione (GSH) levels. Ultraviolet B irradiation caused a rapid 20% decline in GSH levels that returned to near-control values after a 3 h postirradiation incubation. The results of this study indicate that fluences lower than previously found to be cataractogenic can perturb calcium cell signaling in cultured lens epithelial cells.  相似文献   

6.
Tissue inhibitors of metalloproteinases (TIMPs) are the major endogenous regulators of metalloproteinase activity in tissues. TIMPs are able to inhibit activity of all known matrix metalloproteinases (MMPs) and thus participate in controlling extracellular matrix synthesis and degradation. We showed previously elevated expressions of MMPs in the rabbit corneal epithelium upon UVB exposure and suggested that these enzymes might be involved in corneal destruction caused by excessive proteolysis. The aim of this study was to investigate TIMPs in the corneal epithelium after UV irradiation using immunohistochemical and biochemical methods. We found that as compared to control rabbit corneas where relatively high levels of TIMPs were present in the epithelium, repeated irradiation of the cornea with UVB rays (not with UVA rays of similar doses) significantly decreased TIMPs in corneal epithelial cells. The results of this study point to the suggestion that the decrease in TIMPs in the corneal epithelium after UVB irradiation contributes to increased proteolytic activity of MMPs in UVB‐irradiated corneal epithelium found previously.  相似文献   

7.
Under normal conditions, the cornea absorbs the majority of UVB (ultraviolet B, 280-320 nm) rays, which is very important for the protection of the inner eye against their damaging effect. Our previous studies have shown that repeated irradiation of the rabbit cornea with UVB rays for 5 days (daily dose of 1.01 J cm(- 2)) caused photokeratitis accompanied by swelling (hydration) of the corneal stroma, thinning of the corneal epithelium and decrease in antioxidants. The purpose of this study was to examine the light absorption properties of such damaged rabbit cornea. Results of both spectrophotometry of the whole corneal buttons and corneal tissue dissolved in sodium hydroxide show that because of above mentioned disturbances, UVB-irradiated cornea absorbs more light throughout the whole measurable UV-VIS spectral range than the normal cornea. Increased corneal thickness (result of hydration), changes of corneal transparency (the cornea becomes grayish) and some increase in protein content all contribute to the increased light absorption of UVB irradiated corneas. We suggest that the UVB-irradiated cornea, although damaged and nearly without antioxidants, might actually through its higher UV absorbance protect the inner eye against further damage from UVB rays.  相似文献   

8.
We have previously shown that keratinocytes in vitro can convert biologically inactive vitamin D3 to the hormone calcitriol. The present study was initiated to test whether ultraviolet B (UVB)-induced photolysis of provitamin D3 (7-dehydrocholesterol, [7-DHC]) which results in the formation of vitamin D3 also leads to the generation of calcitriol in keratinocytes. Submerged monolayers of HaCaT keratinocytes were preincubated with 7-DHC (25 microM) at 37 degrees C and irradiated with monochromatic UVB at different wavelengths (effective UV-doses: 7.5-60 mJ/cm2), or a narrow-band fluorescent lamp Philips TL-01 (UVB-doses: 125-1500 mJ/cm2). Irradiation with both sources of UVB resulted in the generation of different amounts of previtamin D3 in our in vitro model followed by time-dependent isomerization to vitamin D3 and consecutive formation of calcitriol in the picomolar range. Unirradiated cultures or cultures exposed to wavelengths > 315 nm generated no or only trace amounts of calcitriol. The conversion of vitamin D3 generated after UVB irradiation to calcitriol is inhibited by ketoconazole indicating the involvement of P450 mixed function oxidases in this chemical reaction. The generation of calcitriol was wavelength- and UVB dose dependent and reached approximately 18-fold higher levels after irradiation at 297 nm than at 310 nm (effective UVB dose: 30 mJ/cm2). Hence, keratinocytes may be a potential source of biologically active calcitriol within epidermis, when irradiated with therapeutical doses of UVB.  相似文献   

9.
The process of cross-linking of collagen phosphoric acid hydrolysates (CH) with cyanuric chloride (CY) was studied by the increase in the denaturation temperature using differential scanning calorimetry (DSC). This measurement gave indications concerning the efficiency of the treatment, i.e., the extent of cross-linking of the collagen hydrolysates. The optimal conditions for cross-linking were determined: CH/CY in a ratio 1:1, reaction time 1 h at temperature 50 °C. At these conditions cross-linked structural units with higher thermal stability were formed.  相似文献   

10.
Gelatin gel microcapsules with a narrow size distribution have been prepared for the use of regenerative therapy by means of SPG (Shirasu porous glass) emulsification and UV-induced cross linking, and the melting and swelling behaviors of the gel membrane of the microcapsules were observed. The gel melting temperature was proportional to the 2/3 power of UV irradiation time t for tor=1 h. The average cross-sectional area of the microcapsules that remains insoluble normalized by that at 25 degrees C monotonically increased with temperature for tor=1 h. Repeated quenching of the gel microcapsules between two temperatures (25 and 40 degrees C) induced a reversible size change, which was attributed to the helix-coil transition of collagen molecules locally. From a theoretical consideration of gel particles, the observed gel melting behavior was explained well, and the scaled volume of the microcapsules was expressed as a function of scaled temperature with four fitting parameters for t相似文献   

11.
The thermal stability of the scleral and corneal tissues after in vitro treatment with ribose, threose, and glyceraldehyde was investigated. The thermal transition temperature and the enthalpy of collagen fiber crosslinking were determined by differential scanning calorimetry (DSC). The resistance of the tissues toward trypsin was also determined after heating tissue samples in the DSC furnace. It was shown that the denaturation temperature of scleral and corneal samples treated by crosslinking agents increased, but the enthalpy of denaturation decreased. It is suggested that crosslinking in the collagen matrix of the cornea and sclera prevents complete collagen denaturation if the temperature does not rise up to 110 °C.  相似文献   

12.
The thermal properties of the dispersion of sodium salt of dimyristoylphosphatidylglycerol (NaDMPG) in water have been investigated as functions of incubation temperature and aging time by DSC, XRD, sodium ion activity, pH, zeta-potential, and IR measurements. The DSC charts for NaDMPG dispersions incubated below 30 degrees C showed an endothermic peak at 31.7 degrees C with a small shoulder peak at Tm (gel-liquid crystal transition temperature: 23.5 degrees C). The temperature of 31.7 degrees C coincides with the T* temperature at which a high-order transition in the NaDMPG bilayer assembly has been found to occur in our previous studies. However, no peak was observed for the dispersions incubated above 32 degrees C. These results indicate that thermal properties of NaDMPG bilayers definitely differ below and above the T* temperature. The dispersion which had been once incubated at 40 degrees C for 24 h never showed the endothermic peak at T* even after the further aging at 3 degrees C for 12-day. Namely, the NaDMPG bilayer assembly exhibits an intensive thermohysteresis. The XRD charts for the NaDMPG dispersions incubated at 25 degrees C showed a sharp X-ray diffraction pattern corresponding to the repeat distance of d = 4.75 nm regardless of their aging time, while the dispersions incubated at 40 degrees C had no diffraction peak until 9-day elapsed. After 10-day aging at 40 degrees C, however, a diffraction peak corresponding to d = 5.55 nm clearly appeared. In the DSC measurements for the dispersion incubated at 40 degrees C, a few endothermic peaks began to appear between Tm and T* after approximately 7-day aging. Then, they shifted toward higher temperatures and finally converged into a single peak at 40-42 degrees C after 14-day aging. These XRD and DSC peaks observed after a long period of aging time above T* suggest that conformations of the hydrophilic groups and the hydrocarbon chains in the NaDMPG bilayers take a more tight and closer arrangement very slowly via an intermediate state above T*, and a new gel phase of the bilayers is consequently formed, the transition temperature (T(I) temperature) of which is 40-42 degrees C. A molecular interpretation for such transition processes in the bilayer assembly of NaDMPG dispersions has been proposed on the basis of pH, sodium ion activity, zeta-potential, IR data, etc.  相似文献   

13.
UV irradiation is widely used for the treatment of atopic eczema. In recent years, UVA1 phototherapy has gained increasing attention. This study analyzed the influence of different UV wavelengths--especially UVA1--on histamine release from human basophils and mast cells. The modulation of this parameter might be responsible for some of the therapeutic effects of UV irradiation. Enriched human basophils and human mast cells (HMC1 cell line) were irradiated with increasing doses of UVB, UVA and UVA1 in vitro. After irradiation, different stimulants were added to induce histamine release. In additional experiments, basophils were preincubated with superoxide dismutase, ascorbate or trolox to study the role of antioxidants in the modulation of histamine release after UV irradiation. UVA and UVA1 significantly inhibited histamine release from basophils and mast cells. UVB only had an inhibitory effect on mast cells. Preincubation with superoxide dismutase and ascorbate did not influence the inhibitory effect of UVA1 on basophil histamine release, whereas trolox decreased significantly the histamine release from nonirradiated basophils.  相似文献   

14.
An investigation into the influence of UV irradiation on elastin hydrolysates in the presence of collagen was carried out using UV-Vis spectroscopy and spectrofluorometry. It was found that the absorbance of elastin hydrolysates in solution increased during irradiation more than the absorbance of the elastin/collagen blend. The fluorescence of elastin hydrolysates was observed at 305nm and at 380nm after excitation at 270nm. For the elastin/collagen mixture in solution, fluorescence spectrum shows only one maximum at 305nm. UV irradiation caused fluorescence fading at 305nm. For irradiated elastin the fluorescence at 305nm decreased faster than for the irradiated elastin/collagen mixture. The maximum of the fluorescence peak was shifted for elastin by 4nm, whereas for the elastin/collagen blends the shift was only 1-2nm. All the obtained results point out the ability of mixing elastin and collagen, and suggest that the elastin/collagen mixture in solution is less sensitive to UV irradiation than elastin hydrolysates alone.  相似文献   

15.
Recent studies have shown that structural modifications of α-crystallin during lens aging decrease it's effectiveness as a molecular chaperone. Some of these posttranslational modifications have been linked to UV radiation, and this study was undertaken to investigate the effect of UV irradiation on the ability of α-crystallin to suppress nonspecific aggregation. The effect of 3-hydroxykynurenine (3-HK) was also investigated as a model for its glucoside (3-HKG), a main lens chromophore that has been linked to photochemical changes in the human lens. Alpha- and γ-crystallin solutions (1 mg/mL, 1:0.125 wt/wt) were photolyzed (transmission above 295 nm) for various time intervals. Thermal denaturation of γ-crystallin with or without α-crystallin was carried out at 70°C and increases in light scattering were measured at 360 nm. We found that (1) irradiation of γ-crystallin increased its susceptibility to heat-induced scattering. The addition of α-crystallin protects it against thermal denaturation, although its ability to do so decreases the longer γ-crystallin is irradiated and (2) irradiation of α-crystallin decreases its ability to suppress nonspecific aggregation and the presence of 3-HK during irradiation decreases it further. Our results indicate that posttranslational modifications of α-crystallin due to UV irradiation affect the sites and mechanisms by which it interacts with γ-crystallin. The kinetics of γ-crystallin unfolding during thermal denaturation were also analyzed. We found that a simple two state model applies for nonirradiated γ-crystallin. This model does not hold when γ-crystallin is irradiated in the presence or absence of α-crystallin. In these cases, two step or multistep mechanisms are more likely.  相似文献   

16.
Collagen degradation caused by IR laser irradiation in ligament tissues was studied by thermal analysis and cross-polarization optical coherent tomography. It was found that, at 60°C, laser-induced modification of the quasi-crystalline packing of ordered collagen fibers occurred without the helix-coil molecular conformation transition. It was shown that, for uniaxial tension of ligaments, laser irradiation caused serious distortions in the structure of collagen and increased the fraction of macromolecules in the random coil state. It was assumed that the thermomechanical effect of laser treatment during laser heating played an important role. Original Russian Text ? O.L. Zakharkina, N.Yu. Ignat’eva, R.R. Iksanov, V.A. Kamenskii, E.N. Sobol’, V.V. Lunin, 2009, published in Zhurnal Fizicheskoi Khimii, 2009, Vol. 83, No. 2, pp. 383–390.  相似文献   

17.
The photochemical stability of poly(vinyl alcohol) (PVA) in the presence of 1%, 3% and 5% of collagen has been studied by Fourier Transform Infrared (FTIR) Spectroscopy, UV-vis spectroscopy, and Differential Scanning Calorimetry (DSC). PVA samples containing 1%, 3% and 5% of collagen were irradiated with UV light wavelength λ = 254 nm in air.The results have shown that PVA in the presence of 1%, 3% and 5% of collagen is less stable under UV radiation than pure PVA. A small amount of collagen in PVA enhances photooxidation in the PVA. The amount of crystallinity in PVA containing 1%, 3% and 5% of collagen decreases faster with UV irradiation time than that for pure PVA films.  相似文献   

18.
High-density polyethylene/ethylene vinyl-acetate copolymer/magnesium hydroxide composites were crosslinked via high-energy electron beam irradiation in the presence of triallylisocyanurate. The structure of the cross-linking network was determined with the help of rheological measurements through advanced rheological extended systems (ARES). The thermal and flame-retardant properties of the irradiated composites were investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and cone calorimetry. Results showed that the cross-linking network structure could enhance the thermal stability of composites, and did favor to smoke suppression. However, the peak heat release rate (PHRR) increased and the time to PHRR shortened, inferring that the composites after irradiation cross-linking were easier to combust. The char microstructure after cone calorimetry test was observed and used to give explanation of the above results.  相似文献   

19.
Structural transformations induced in gamma and alpha globulins under influence of gamma irradiation using doses of 2.5 and 24 kGy were studied by differential scanning calorimetry (DSC) and thermogravimetry (TG, DTG). Thermal decomposition of the globulins irradiated in water suspensions occurs at higher temperatures, in comparison to the reference non-irradiated samples. This was related to formation of covalent linkages in the irradiated proteins, apart to chemical changes induced in amino-acids. Essential modification of thermal decomposition was detected already after irradiation with a dose of 2.5 kGy performed for water suspensions. Irradiation of solid native proteins induces decrease in decomposition temperature and gives evidence of proteins degradation.  相似文献   

20.
Abstract Effects on lens physiology of UVB and UVA used separately and sequentially were investigated using 4 week old rabbit lenses in organ culture. Narrowband UVB at 0.3 J/cm2= joules/lens (1 h exposure) has little effect on sodium and calcium concentrations in the lens interior or transparency of lenses subsequently cultured for 20 h after a 1 h exposure. With an incident energy of 3 J/cm2 of broadband UVB (295–330 nm), lenses become opaque and slightly swollen with significant ion imbalances during culture over a 1 day period. In contrast, lenses exposed to approximately 6–24 J/cm2 of UVA (330–400 nm) remain transparent after 1 day of culture. Extended culture up to 4 days reveals no signs of opacification. Ion homeostasis and normal lens hydration are also maintained in UVA-irradiated lenses. The presence of 95% oxygen during UVA irradiation is also without effect. Broadband UVA irradiation is damaging, however, if lenses are first exposed to subthreshold doses of narrowband UVB (307 ± 5 nm) irradiation, viz . 0.3 J/cm2. Thus, sequential UVB/UVA irradiation at subthreshold doses causes impaired active cation transport and accumulation of sodium and calcium accompanying lens opacification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号