首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The null geodesics are investigated in a class of open space-time homogeneous cosmological models with rotating sheared matter (Ozsváth classIII). Gödel's model is a special case. A stationary polar coordinate system is employed in which matter rotates rigidly. The geodesic equations are solved. Caustics and global rotation are discussed.  相似文献   

2.
Multi-dimensional spherically symmetric spacetimes are of interest in the study of higher-dimensional black holes (and solitons) and higher-dimensional cosmological models. In this paper we shall present a comprehensive investigation of solutions of the five-dimensional spherically symmetric vacuum Einstein field equations subject only to the condition of separability in the radial coordinate (but not necessarily in the remaining two coordinates). A variety of new solutions are found which generalize a number of previous results. The properties of these solutions are discussed with particular attention being paid to their possible astrophysical and cosmological applications. In addition, the four-dimensional properties of matter can be regarded as geometrical in origin by a reduction of the five-dimensional vacuum field equations to Einstein's four-dimensional theory with a non-zero energy-momentum tensor constituting the material source; we shall also be interested in the induced matter associated with the new five-dimensional solutions obtained.  相似文献   

3.
We consider a special class of stationary rotating charged dust solutions of Einstein's field equations without cosmological constant. In these space-times, the motion of freely falling particles and of light rays can be visualized by the motion of charged particles in an appropriate model magnetic field. Any curl-free magnetostatic field, given on an open subset of Euclidean 3-space, can serve as a model magnetic field for a charged dust solution in this sense. The simplest example, corresponding to a homogeneous model magnetic field, is given by Som-Raychaudhuri space-time. Some other examples are worked out.  相似文献   

4.
In 1961, Brans and Dicke [1] provided an interesting alternative to general relativity based on Mach’s principle. To understand the reasons leading to their field equations, we first consider homogeneous and isotropic cosmological models in the Brans-Dicke theory. Accordingly we start with the Robertson-Walker line element and the energy tensor of a perfect fluid. The scalar field φ is now a function of the cosmic time only. Then we consider spatially homogeneous and anisotropic Bianchi type-I-cosmological solutions of modified Brans-Dicke theory containing barotropic fluid. These have been obtained by imposing a condition on the cosmological parameter Λ(φ). Again we try to focus the meaning of this cosmological term and to relate it to the time coordinate which gives us a collapse singularity or the initial singularity. On the other hand, our solution is a generalization of the solution found by Singh and Singh [2]. As far as we are aware, such solution has not been given earlier.  相似文献   

5.
6.
We have derived a system of second-order ordinary differential equations to describe the evolution of small perturbations in the gravitational field and matter characteristics in RTG, with the cosmological solution being a background. These equations are shown to admit the effective gauge invariance, since the graviton mass can be neglected in most cases of interest. The standard expansion in scalar, vector, and tensor components is performed. The equations have been derived for each component.  相似文献   

7.
We interpret the 15 equations of Kaluza-Klein gravity as 10 Einstein equations, 1 wave equation and 4 equations of motion. An exact cosmological solution of the apparently empty 5D field equations describes a 4D fluid with an effective density and pressure induced by the curvature associated with the fifth dimension. The rest mass of a particle in the fluid depends on the global solution and changes slowly with time. This approach to Kaluza-Klein theory in general results in Machian cosmologies.  相似文献   

8.
In this paper we shall discuss the backreaction of a massive quantum scalar field on the curvature, the latter treated as a classical field. Furthermore, we shall deal with this problem in the realm of cosmological spacetimes by analyzing the Einstein equations in a semiclassical fashion. More precisely, we shall show that, at least on small intervals of time, solutions for this interacting system exist. This result will be achieved providing an iteration scheme and showing that the series, obtained starting from the massless solution, converges in the appropriate Banach space. The quantum states with good ultraviolet behavior (Hadamard property), used in order to obtain the backreaction, will be completely determined by their form on the initial surface if chosen to be lightlike. Furthermore, on small intervals of time, they do not influence the behavior of the exact solution. On large intervals of time the situation is more complicated but, if the spacetime is expanding, we shall show that the end-point of the evolution does not depend strongly on the quantum state, because, in this limit, the expectation values of the matter fields responsible for the backreaction do not depend on the particular homogeneous Hadamard state at all. Finally, we shall comment on the interpretation of the semiclassical Einstein equations for this kind of problems. Although the fluctuations of the expectation values of pointlike fields diverge, if the spacetime and the quantum state have a large spatial symmetry and if we consider the smeared fields on regions of large spatial volume, they tend to vanish. Assuming this point of view the semiclassical Einstein equations become more reliable.  相似文献   

9.
An exact solution of the Einstein equations for a Bianchi-I universe in the presence of dust, stiff matter and a negative cosmological constant, generalising the well-known Heckmann–Schucking solution is presented. This solution describes a universe existing during a finite period of cosmic time, where the beginning and the end of its evolution are characterized by the presence of Kasner type cosmological singularities.  相似文献   

10.
A cosmological model in which the universe has its critical density and gravitational constants generalized as coupling scalars in Einstein's theory is considered. A general method of solving the field equations is given. An exact solution for matter distribution in cosmological models satisfying G=G0(R/R0)n is presented. Corresponding physical interpretations of the cosmological solutions are also discussed.  相似文献   

11.
U. Kasper 《Annalen der Physik》1979,491(2):135-147
Subject is considered on the level of classical field theory. We start from some aspects of the theory of ferromagnets. Their counterpart in classical field theory is pointed out using the over simplified model of a selfinteracting scalar field. The ground state (“vacuum expection value”) of the scalar field is interpreted as cosmic background field, which can be considered as constant for local physical phenomena. In practice, however, it is a function of the age of universe. Which kind of function it could be is suggested by a discussion of the cosmic variability of Eddington's number γ = 1040, which refers to Dirac's consideration of this problem. But contrary to Dirac's assumption that atomic quantities are constant, we suppose that the inertial mass of elementary particles is a function of the age of universe. The cosmic gravitational field is described by other equations than the gravitational field created by local matter distributions. The field equations for the local gravitational field we start from reduce to Einstein's equations, if we neglect the possible influence of the universe on local phenomena. In case that the cosmic matter is homogeneously and isotropically distributed, the field equations for the cosmic gravitational field permit only such a time dependent solution the three-spaces of which are linearly expanding and spherically closed. The different field equations for cosmic and local gravitational fields are considered approximations of more fundamental field equations which approximately split into two sets of equations, if it is possible to contrast local physical systems with the universe. The described cosmological model taken as a basis, the inertial mass of elementary particles becomes a function of the matter density creating the cosmic gravitational field. This could be considered as, at least, partly realisation of Mach's idea concerning the origin of inertia. Starting from the interpretation of the ground state (vacuum expection value) as a function of a certain cosmic background field, more realistic gage field models could give the following picture of cosmic development: In the far past there was a state of the universe characterized by enormous contraction of matter. In this stage of development, it was impossible to contrast particles with the universe. Matter expands and it becomes possible to contrast certain physical systems with the universe. But the ground state is such a symmetric one that only fields with vanishing rest mass can be contrasted with the universe (ferromagnet above Curie temperature). With further expansion of the universe the ground state will lose certain symmetry properties. By this it becomes possible that you get the impression there are particles with nonvanishing rest mass (ferromagnet below Curie temperature). Finally, the influence of the universe on local physical systems goes to zero with further expansion. Especially, this means the inertial mass of elementary particles goes to zero, too (Curie temperature of ferromagnetic material goes to zero with cosmic expansion).  相似文献   

12.
It is assumed that the current cosmic acceleration is driven by a scalar field, the Lagrangian of which is a function of the kinetic term only, and that the luminosity distance is a given function of the red-shift. Upon comparison with baryon acoustic oscillations and cosmic microwave background data the parameters of the models are determined, and then the time evolution of the scalar field is determined by the dynamics using the cosmological equations. We find that the solution is very different than the corresponding solution when the non-relativistic matter is ignored, and that the universe enters the acceleration era at larger red-shift compared to the standard ΛCDM model.  相似文献   

13.
A new solution of the Einstein-Yang-Mills system with axial symmetry and cosmological constant is given here. This new metric, which in the absence of matter becomes the de Sitter universe, is the natural generalization of both a recent result of Perry for stellar (asymptotically flat) black holes and a well-knwn family of solutions of the Einstein-Maxwell system with nonvanishing cosmological constant given some time ago by Carter. Calculations have been carried out making extensive use of the coordinates found by Plebanski.  相似文献   

14.
This article is written as a review of the Hamiltonian formalism for the bigravity with de Rham–Gabadadze–Tolley (dRGT) potential, and also of applications of this formalism to the derivation of the background cosmological equations. It is demonstrated that the cosmological scenarios are close to the standard ΛCDM model, but they also uncover the dynamical behavior of the cosmological term. This term arises in bigravity regardless on the choice of the dRGT potential parameters, and its scale is given by the graviton mass. Various matter couplings are considered.  相似文献   

15.
Two general results for stationary axially symmetric interior solutions of the Einstein or Einstein-Maxwell equations in cylindrical coordinates are derived.Firstly, a coordinate condition for interior solutions is proposed, corresponding to the Weyl coordinate condition used in the exterior.Secondly, it is shown that elementary flatness in the interior is always ensured by realistic boundary conditions and matter tensors, given elementary flatness in the exterior metric.A physical discussion of the results is given, particularly in reference to solutions which have singular struts in them.  相似文献   

16.
The paper aims to introduce a new symmetry principle in the space-time geometry through the elimination of the classical idea of rest and by including a universal minimum speed limit in the subatomic world. Such a limit, unattainable by particles, represents the preferred reference frame associated with a universal background field that breaks Lorentz symmetry. Thus, the structure of space-time is extended due to the presence of a vacuum energy density, which leads to a negative pressure at cosmological scales. The tiny values of the cosmological constant and the vacuum energy density shall be successfully obtained, which are in good agreement with current observational results.   相似文献   

17.
We derive, from the Einstein-Maxwell field equations, the Lorentz equations of motion with radiation reaction for a charged mass particle moving in a background gravitational and electromagnetic field by utilizing a line element for the background space-time in a coordinate system specially adapted to the world line of the particle. The particle is introduced via perturbations of the background space-time (and electromagnetic field) which are singular only on the source world line.  相似文献   

18.
An exact cylindrically symmetric solution of Einstein's gravitational field equations is given for a null fluid imploding radially along an infinite axis. This solution plays an important rôle in the late stages of collapse of a long cylinder of matter. One might expect that self-gravitational effects due to the increasingly relativistic mass of the collapsing matter would create arbitrarily large gravitational fields. It is shown, however, that in the null-fluid approximation the metric is everywhere regular.  相似文献   

19.
C. Barceló 《JETP Letters》2007,84(12):635-639
The steps followed by Einstein when he first wrote on cosmology from the point of view of the general theory of relativity are revised. It is argued that his insightful line of thought leading to the introduction of the cosmological constant in the equations of motion has only one weakness: the constancy of the cosmological term, or what is the same, its independence of the matter content of the universe. Eliminating this feature, a simple and reasonable modification of the cosmological equations of motion is proposed. The solutions of the new cosmological equations give rise to a cosmological model that tries to approach the Einstein static solution. This model exhibits very appealing features in terms of fitting current observations. The text was submitted by the author in English.  相似文献   

20.
A cosmological model of dark energy interacting with dark matter and another general component of the universe is considered. The equations for the coincidence parameters r and s, which represent the ratios between dark energy and dark matter and the other cosmic fluid respectively, are analyzed in terms of the stability of stationary solutions. The obtained general results allow to shed some light on the equations of state of the three interacting fluids, due to the constraints imposed by the stability of the solutions. We found that for an interaction proportional to the sum of the dark energy density and the third fluid density, the hypothetical fluid must have positive pressure, which leads naturally to a cosmological scenario with radiation, unparticle or even some form of warm dark matter as the third interacting fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号