首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The surface pressure distribution and the vortex shedding frequency were investigated for the flow around perforated horizontal and diagonal square cylinders with surface injection through various surfaces. For this purpose, surface pressure measurements on each square cylinder (horizontal and diagonal) and vortex shedding frequency measurements in the wake region were performed at three different Reynolds numbers in a wind tunnel. The parameters considered were injection coefficient, position of perforated surface (i.e., top, rear, top-rear and all), pressure coefficient, drag coefficient, and the Strouhal number. The results showed that pressure coefficient distribution, drag coefficient, and the Strouhal number were influenced by the position of the perforated surface and by the injection coefficient. The surface injections through the top-rear, rear and all surfaces of a diagonal square cylinder reduce the drag coefficient for the all Reynolds numbers, while the injection through all surfaces only reduces the drag coefficient of a horizontal square cylinder. The other aerodynamic parameter Strouhal number can also be controlled by injection through certain surfaces of a horizontal square cylinder.  相似文献   

2.
The flow characteristics around an elliptic cylinder with an axis ratio of AR=2 located near a flat plate were investigated experimentally. The elliptic cylinder was embedded in a turbulent boundary layer whose thickness is larger than the cylinder height. For comparison, the same experiment was carried out for a circular cylinder having the same vertical height. The Reynolds number based on the height of the cylinder cross-section was 14000. The pressure distributions on the cylinder surface and on the flat plate were measured for various gap distances between the cylinder and the plate. The wake velocity profiles behind the cylinder were measured using hot-wire anemometry. In the near-wake region, the vortices are shed regularly only when the gap ratio is greater than the critical value of G/B=0·4. The critical gap ratio is larger than that of a circular cylinder. The variation of surface pressure distributions on the elliptic cylinder with respect to the gap ratio is much smaller than that on the circular cylinder. This trend is more evident on the upper surface than the lower one. The surface pressures on the flat plate recover faster than those for the case of the circular cylinder at downstream locations. As the gap ratio increases, the drag coefficient of the cylinder itself increases, but the lift coefficient decreases. For all gap ratios tested in this study, the drag coefficient of the elliptic cylinder is about half that of the circular cylinder. The ground effect of the cylinder at small gap ratio constrains the flow passing through the gap, and restricts the vortex shedding from the cylinder, especially in the lower side of the cylinder wake. This constraint effect is more severe for the elliptic cylinder, compared to the circular cylinder. The wake region behind the elliptic cylinder is relatively small and the velocity profiles tend to approach rapidly to those of a flat plate boundary layer  相似文献   

3.
In the present experimental investigation the surface pressure distribution, vortex shedding frequency, and the wake flow behind a porous circular cylinder are studied when continuous suction or blowing is applied through the cylinder walls. It is found that even moderate levels of suction/blowing (5% of the oncoming streamwise velocity) have a large impact on the flow around the cylinder. Suction delays separation contributing to a narrower wake width, and a corresponding reduction of drag, whereas blowing shows the opposite behaviour. Both uniform suction and blowing display unexpected flow features which are analysed in detail. Suction shows a decrease of the turbulence intensity throughout the whole wake when compared with the natural case, whilst blowing only shows an effect up to five diameters downstream of the cylinder. The drag on the cylinder is shown to increase linearly with the blowing rate, whereas for suction there is a drastic decrease at a specific suction rate. This is shown to be an effect of the separation point moving towards the rear part of the cylinder, similar to what happens when transition to turbulence occurs in the boundary layer on a solid cylinder. The suction/blowing rate can empirically be represented by an effective Reynolds number for the solid cylinder, and an analytical expression for this Reynolds number representation is proposed and verified. Flow visualizations expose the complexity of the flow field in the near wake of the cylinder, and image averaging enables the retrieval of quantitative information, such as the vortex formation length.  相似文献   

4.
An experiment was carried out in a low-speed wind tunnel to study the turbulence structure of the boundary layer over a two-dimensional square cavity on a flat plate. The main purpose of this investigation is to examine the way a square cavity modifies the near-wall structure of the turbulent boundary layer leading to a possible drag reduction overd-type roughness. The experimental results on pressure coefficient and friction coefficient indicated a small reduction in total drag in this configuration. This seems to be due to the stable vortex flow observed within the cavity which absorbs and reorganizes the incoming turbulence in the cavity, thereby modifying the near-wall turbulence structure of the boundary layer. The resultant turbulence structure was very similar to that over drag-reducing riblets surface.  相似文献   

5.
An experiment was carried out in a low-speed wind tunnel to study the turbulence structure of the boundary layer over a two-dimensional square cavity on a flat plate. The main purpose of this investigation is to examine the way a square cavity modifies the near-wall structure of the turbulent boundary layer leading to a possible drag reduction overd-type roughness. The experimental results on pressure coefficient and friction coefficient indicated a small reduction in total drag in this configuration. This seems to be due to the stable vortex flow observed within the cavity which absorbs and reorganizes the incoming turbulence in the cavity, thereby modifying the near-wall turbulence structure of the boundary layer. The resultant turbulence structure was very similar to that over drag-reducing riblets surface.  相似文献   

6.
提出了湍流边界层的一种简单、快速计算方法, 用以求解强吸气作用下旋转圆筒表面边界层流动. 首先, 理论分析了同心圆筒间的旋转流体运动, 外筒静止、内筒旋转且为多孔吸气条件. 强吸气情况下旋转流动主要表现为内筒壁面附近的边界层流动, 基于这一事实得到了周向速度分布的解析表达式. 其次, 通过引入新参数扩展Cebeci-Smith代数湍流模型, 使其能考虑流线曲率、壁面吸气、低Reynolds数效应等因素. 针对这些因素的综合影响, 采用解析修正和经验参数对模型进行调整. 同时, 基于Reynolds应力湍流模型的仿真结果, 校准代数湍流模型中的经验参数. 最后, 给出基于广义Cebeci-Smith湍流模型的旋转壁面边界层流动的迭代算法, 该算法适用于需要特殊迭代过程的轴向及周向流动均匀情况. 计算了不同旋转速度和吸气强度组合工况下的边界层流动, 其周向速度和湍流强度分布与基于Reynolds应力湍流模型的计算结果非常接近. 并且表明, 当Reynolds应力湍流模型数值模拟预测内筒边界层为稳定层流时, 该方法也再现了相同初始条件下的层流边界层.  相似文献   

7.
提出了湍流边界层的一种简单、快速计算方法,用以求解强吸气作用下旋转圆筒表面边界层流动.首先,理论分析了同心圆筒间的旋转流体运动,外筒静止、内筒旋转且为多孔吸气条件.强吸气情况下旋转流动主要表现为内筒壁面附近的边界层流动,基于这一事实得到了周向速度分布的解析表达式.其次,通过引入新参数扩展Cebeci-Smith代数湍流模型,使其能考虑流线曲率、壁面吸气、低Reynolds数效应等因素.针对这些因素的综合影响,采用解析修正和经验参数对模型进行调整.同时,基于Reynolds应力湍流模型的仿真结果,校准代数湍流模型中的经验参数.最后,给出基于广义Cebeci-Smith湍流模型的旋转壁面边界层流动的迭代算法,该算法适用于需要特殊迭代过程的轴向及周向流动均匀情况.计算了不同旋转速度和吸气强度组合工况下的边界层流动,其周向速度和湍流强度分布与基于Reynolds应力湍流模型的计算结果非常接近.并且表明,当Reynolds应力湍流模型数值模拟预测内筒边界层为稳定层流时,该方法也再现了相同初始条件下的层流边界层.  相似文献   

8.
Results of experiments with a turbulent flow around a transversely aligned circular cylinder located at identical distances from the walls of a rectangular channel are reported. Data on averaged velocity fields around the cylinder are obtained by means of particle image velocimetry (PIV). Based on these fields, the near wake behind the cylinder is studied, and the kinematic characteristics for flow regimes with and without cavitation are compared. Based on the vector fields of averaged velocity, the angles of separation of the boundary layer from the cylinder surface in the considered flow regimes are determined. The drag coefficients of the cylinder for different flow regimes are calculated. It is demonstrated that the vortex region behind the cylinder and the drag coefficient of the cylinder increase in the case with cavitation. It is also shown that vortex shedding from the cylinder may be irregular, despite the fact that this process is quasi-periodic for most of the time.  相似文献   

9.
Experiments were performed to study surface pressure on a cubic building underlying conical vortices, which are known to cause severe structural damage and failure. The focus is on the effects of turbulence in the incident flow. Three turbulent boundary layers were created in a boundary layer wind tunnel. A wall-mounted cube, i.e. a cube situated on the horizontal ground floor surface of the wind-tunnel test section, was used as an experimental model. The cube was subjected to the incidence flow at 40°. Steady and unsteady pressure measurements were performed on the cube surface. The analysis suggests that conical vortices developed above the top surface of the wall-mounted cube. A larger mean suction was observed on the top cube surface in the less turbulent boundary layer. With an increase in turbulence in the incoming flow, the strong suction zones decreased in size. The fluctuating pressure coefficient profiles retained their shape when the turbulence in the upstream flow of the cube increased. The fluctuating pressure coefficient was observed to be larger in more turbulent flows. The pressure fluctuations were larger on the cube surface underlying outer boundaries of the conical vortex. The fluctuating pressure coefficient under the conical vortex was three to four times larger than in the weak suction zone on the central area of the top cube surface. Close to the leading cube corner, the pressure spectra were dominated by a single low frequency peak. As the conical vortex developed, this primary peak weakened and a secondary peak emerged at a higher reduced frequency. There is a general trend of shifting the pressure spectra towards higher reduced frequencies when the turbulence in the undisturbed incident flow increases.  相似文献   

10.
The effects of a trapped vortex cell (TVC) on the aerodynamic performance of a NACA0024 wing model were investigated experimentally at Re = 106 and 6.67×1056.67\times 10^{5}. The static pressure distributions around the model and the wake velocity profiles were measured to obtain lift and drag coefficients, for both the clean airfoil and the controlled configurations. Suction was applied in the cavity region to stabilize the trapped vortex. For comparison, a classical boundary layer suction configuration was also tested. The drag coefficient curve of the TVC-controlled airfoil showed sharp discontinuities and bifurcative behavior, generating two drag modes. A strong influence of the angle of attack, the suction rate and the Reynolds number on the drag coefficient was observed. With respect to the clean airfoil, the control led to a drag reduction only if the suction was high enough. Compared to the classical boundary layer suction configuration, the drag reduction was higher for the same amount of suction only in a specific range of incidence, i.e., α = −2° to α = 6° and only for the higher Reynolds number. For all the other conditions, the classical boundary layer suction configuration gave better drag performances. Moderate increments of lift were observed for the TVC-controlled airfoil at low incidence, while a 20% lift enhancement was observed in the stall region with respect to the baseline. However, the same lift increments were also observed for the classical boundary layer suction configuration. Pressure fluctuation measurements in the cavity region suggested a very complex interaction of several flow features. The two drag modes were characterized by typical unsteady phenomena observed in rectangular cavity flows, namely the shear layer mode and the wake mode.  相似文献   

11.
双排开孔圆筒防波堤是基于圆筒、板式结构的一种复合式新型结构型式;基于不可压缩两相流模型建立三维数值波浪水槽,通过RNG k-ε湍流模型进行湍流封闭,并采用TruVOF方法捕捉自由液面,开展波浪与双排开孔圆筒防波堤相互作用数值模拟,探究相对排间距、开孔率对新型双排开孔圆筒防波堤消浪性能的影响,分析了后排开孔圆筒防波堤附近的复杂水动力现象和流动特性.结果表明,在本文研究工况范围内,沿程平均波高随相对排间距的增大先增大后减小,随开孔率的增大而增大,周期对沿程平均波高的影响没有明显规律;当B/D=9, e=23.11%时,新型双排开孔圆筒防波堤消浪效果最优,反射系数在0.4~0.46之间,透射系数在0.3~0.35之间,耗散系数在0.8~0.85之间;自由液面破碎、水气掺混、环状涡运动演化是新型双排开孔圆筒防波堤紊动耗能消波的主要原因;相对排间距会引起后排防波堤附近涡量分布以及剪切层形态的变化,从而导致不同的紊动特性,影响双排开孔圆筒防波堤消浪特性.研究结果可以为新型双排开孔圆筒防波堤工程设计与消浪机理研究提供理论支撑.  相似文献   

12.
The influence of distributed suction on the hydrodynamic drag and some boundary layer characteristics on a body of revolution were investigated experimentally in a test basin. The results obtained permitted making a conclusion about the possibility of an essential reduction in the hydrodynamic drag (1.5–2-fold) and the level of velocity fluctuation (10–30 dB) in the boundary layer by using suction of small quantities of water through a porous skin (6.10?4 discharge coefficient).  相似文献   

13.
A reduction of the transition Reynolds number from laminar separation to turbulent one of cross flow around a body is anticipated in a gas—liquid bubbly flow, since there exists intensive turbulence in the main flow. A decrease in the drag coefficient of the body can also be expected. This report was aimed to classify flow patterns of the two-phase wake flow behind a cylinder and to investigate quantitatively the change of the drag coefficient corresponding to the transition of the flow patterns. From measurements of the static pressure distribution on the cylinder surface and the drag coefficient of the cylinder, it was found that the flow pattern was sure to change finally into a new one similar to the transcritical type in the single-phase flow with an increase of the mean void fraction in the main flow. It was concluded that a large reduction of the upper transition Reynolds number occurred in a two-phase flow, because the transition could be realized by a little increase of the void fraction even below the lower transition Reynolds number in the case of a large cylinder diameter.  相似文献   

14.
A numerical treatment for axisymmetric flow and heat transfer due to a stretching cylinder under the influence of a uniform magnetic field and prescribed surface heat flux is presented. Numerical results are obtained for dimensionless velocity, temperature, skin friction coefficient and Nusselt number for several values of the suction/injection, magnetic and curvature parameters as well as the Prandtl number. The present study reveals that the controlling parameters have strong effects on the physical quantities of interest. It is seen that the magnetic field enhances the dimensionless temperature inside the thermal boundary layer, whereas it reduces the dimensionless velocity inside the hydrodynamic boundary layer. Heat transfer rate reduces, while the skin friction coefficient increases with magnetic field.  相似文献   

15.
The structure and heat transfer in a turbulent separated flow in a suddenly expanding channel with injection (suction) through a porous wall are numerically simulated with the use of two-dimensional averaged Navier–Stokes equations, energy equations, and v 2f turbulence model. It is shown that enhancement of the intensity of the transverse mass flux on the wall reduces the separation region length in the case of suction and increases the separation region length in the case of injection up to complete boundary layer displacement. The maximum heat transfer coefficient as a function of permeability is accurately described by the asymptotic theory of a turbulent boundary layer.  相似文献   

16.
Effects of Gurney Flaps on a NACA0012 Airfoil   总被引:4,自引:0,他引:4  
Experimental measurements of surface pressure distributions and wake profiles were obtained for a NACA0012 airfoil to determine the lift, drag, and pitching-moment coefficients for various configurations. The addition of a Gurney flap increased the maximum lift coefficient from 1.37 to 1.74, however there was a drag increment at low-to-moderate lift coefficient. In addition, the boundary layer profile measurements were taken using a rake of total pressure probes at the 90% chord location on the suction side. The effective Gurney flap height is about 2% of chord length, which provides the highest lift-to-drag ratio among the investigated configurations when compared with the clean NACA0012 airfoil. In this case, the device remains within the boundary layer. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Over a range of Reynolds numbers from 0·6 × 105 to 1·75 × 105 tests were made on a seven rows deep tube bank. These tests were made using a specially instrumented porous cylinder which could be located in any position within the bank. Mass transfer through the porous surface simulating the condensation process in a surface condenser, was applied, and its effect on local parameters investigated. The distribution of static pressure and skin friction was determined around tubes in different rows in the bank. From these measurements, the pressure drag and friction drag were estimated. The total pressure drop across the bank was also measured.

Results showed that, for typical steam condenser loadings, the contribution of the pressure drag to the total drag does not change appreciably with suction. However, the skin friction contribution does change considerably with suction.  相似文献   


18.
邹琳  左红成  柳迪伟  王家辉  徐劲力 《力学学报》2022,54(11):2970-2983
基于定常吹吸气对波浪型圆柱近尾迹流动进行控制以增强柱体振动, 采用大涡模拟研究了亚临界雷诺数(Re = 3000)下前吹后吸和前后吸气控制方式在不同吹吸气工况对波浪型圆柱升阻力特性、时均压力系数、环量、湍动能及近尾迹流动结构的影响. 研究发现: 前吹后吸和前后吸气控制下波浪型圆柱在不同吹吸气动量系数工况脉动升力系数均显著提高, 最大较未受控直圆柱和波浪型圆柱分别提升高达636%和391%, 这主要可能归因于吹吸气控制使波浪型圆柱回流区变短, 高强度涡集中向钝体后方靠拢, 旋涡形成长度缩短, 展向涡流与顺流向涡流相互作用在波浪型圆柱下游形成的“肋状涡”变大变长, 近尾迹环量显著增大, 从而导致脉动升力系数增大, 这可能将诱导柱体产生更强的振动; 同时两种控制方式均改变了波浪型圆柱表面的压力分布, 由于在波浪型圆柱前驻点吹气使前端趋于流线型, 前吹后吸在不同吹吸气动量系数下波浪型圆柱的高压区减小, 但在后驻点吸气使得低压区增大, 而前后吸气在不同吹吸气动量系数下波浪型圆柱的高压区基本不变, 低压区增大. 研究结果可为低风速地区分布式风力俘能结构俘能效率提升提供基础理论支持.   相似文献   

19.
This paper investigates the effects of surface roughness on the flow past a circular cylinder at subcritical to transcritical Reynolds numbers. Large eddy simulations of the flow for sand grain roughness of size k/D = 0.02 are performed (D is the cylinder diameter). Results show that surface roughness triggers the transition to turbulence in the boundary layer at all Reynolds numbers, thus leading to an early separation caused by the increased momentum deficit, especially at transcritical Reynolds numbers. Even at subcritical Reynolds numbers, boundary layer instabilities are triggered in the roughness sublayer and eventually lead to the transition to turbulence. The early separation at transcritical Reynolds numbers leads to a wake topology similar to that of the subcritical regime, resulting in an increased drag coefficient and lower Strouhal number. Turbulent statistics in the wake are also affected by roughness; the Reynolds stresses are larger due to the increased turbulent kinetic energy production in the boundary layer and separated shear layers close to the cylinder shoulders.  相似文献   

20.
The flow around a circular cylinder placed close to a horizontal plane wall was investigated experimentally. Fluctuations of lift and drag of the cylinder and wall interference effects were studied in terms of the gap height between the cylinder and wall and the thickness of the turbulent wall boundary layer. The fluctuating fluid forces acting on the cylinder sharply increased, and the regular vortex shedding, i.e. Kárman vortex streets, started to form beyond a critical gap height. The formation of Kárman vortex streets was abruptly interrupted when the bottom of the cylinder came in contact with the outer layer of the boundary layer developed on the wall. This critical gap height correlated well with the thickness of the boundary layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号