首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Stokes flow of two immiscible fluids through a rigid porous medium is analyzed using the method of volume averaging. The volume-averaged momentum equations, in terms of averaged quantities and spatial deviations, are identical in form to that obtained for single phase flow; however, the solution of the closure problem gives rise to additional terms not found in the traditional treatment of two-phase flow. Qualitative arguments suggest that the nontraditional terms may be important when / is of order one, and order of magnitude analysis indicates that they may be significant in terms of the motion of a fluid at very low volume fractions. The theory contains features that could give rise to hysteresis effects, but in the present form it is restricted to static contact line phenomena.Roman Letters (, = , , and ) A interfacial area of the- interface contained within the macroscopic system, m2 - A e area of entrances and exits for the -phase contained within the macroscopic system, m2 - A interfacial area of the- interface contained within the averaging volume, m2 - A * interfacial area of the- interface contained within a unit cell, m2 - A e * area of entrances and exits for the-phase contained within a unit cell, m2 - g gravity vector, m2/s - H mean curvature of the- interface, m–1 - H area average of the mean curvature, m–1 - HH , deviation of the mean curvature, m–1 - I unit tensor - K Darcy's law permeability tensor, m2 - K permeability tensor for the-phase, m2 - K viscous drag tensor for the-phase equation of motion - K viscous drag tensor for the-phase equation of motion - L characteristic length scale for volume averaged quantities, m - characteristic length scale for the-phase, m - n unit normal vector pointing from the-phase toward the-phase (n = –n ) - p c p P , capillary pressure, N/m2 - p pressure in the-phase, N/m2 - p intrinsic phase average pressure for the-phase, N/m2 - p p , spatial deviation of the pressure in the-phase, N/m2 - r 0 radius of the averaging volume, m - t time, s - v velocity vector for the-phase, m/s - v phase average velocity vector for the-phase, m/s - v intrinsic phase average velocity vector for the-phase, m/s - v v , spatial deviation of the velocity vector for the-phase, m/s - V averaging volume, m3 - V volume of the-phase contained within the averaging volume, m3 Greek Letters V /V, volume fraction of the-phase - mass density of the-phase, kg/m3 - viscosity of the-phase, Nt/m2 - surface tension of the- interface, N/m - viscous stress tensor for the-phase, N/m2 - / kinematic viscosity, m2/s  相似文献   

2.
The linear stability theory is used to study stability characteristics of laminar condensate film flow down an arbitrarily inclined wall. A critical Reynolds number exists above which disturbances will be amplified. The magnitude of the critical Reynolds number is in all practical situations so small that a laminar gravity-induced condensate film can be expected to be unstable. Several stabilizing effects are acting on the film flow; at an inclined wall these effects are due to surface tension, gravity and condensation mass transfer.
Zusammenfassung Mit Hilfe der linearen Stabilitätstheorie werden die Stabilitätseigenschaften laminarer Kondensatfilme an einer geneigten Wand untersucht. Es zeigt sich, daß Kondensatfilme in jedem praktischen Fall ein unstabiles Verhalten aufweisen. Der stabilisierende Einfluß von Oberflächenspannung, Schwerkraft und Stoffübertragung durch Kondensation bewkkt jedoch, daß Störungen in bestimmten Wellenlängenbereichen gedämpft werden.

Nomenclature c=c*/u0 complex wave velocity, celerity, dimensionless - c*=c r * + i c i * complex wave velocity, celerity, dimensional - cp specific heat at constant pressure - g gravitational acceleration - hfg latent heat - k thermal conductivity of liquid - p* pressure - p=p*/u0 2 dimensionless pressure - Pe=Pr Re* Peclet number - Pr Prandtl number - Re*=u0 / Reynolds number (defined with surface velocity) - S temperature perturbation amplitude - t* time - t=t* u0/ dimensionless time - T temperature - Ts saturation temperature - Tw wall temperature - T=Ts-Tw temperature drop across liquid film - u*, v* velocity components - u=u*/u0 dimensionless velocity components - v=v*/u0 dimensionless velocity components - u0 surface velocity of undisturbed film flow - v g * vapor velocity - x*, y* coordinates - x=x*/ dimensionless coordinates - y=y*/ dimensionless coordinates Greek Symbols =* wave number, dimensionless - *=2 /* wave number dimensional - * wave length, dimensional - =*/ wave length, dimensionless - local thickness of undisturbed condensate film - kinematic viscosity, liquid - density, liquid - g density vapor - surface tension - = (1 +) film thickness of disturbed film, Fig. 1 - stream function perturbation amplitude - angle of inclination Base flow quantities are denoted by, disturbance quantities are denoted by.  相似文献   

3.
This paper describes the implementation of an optical technique, allowing to perform concentration and velocity measurements simultaneously and at the same point. This method is based on the coupling of laser-induced fluorescence of rhodamine B, applied to the determination of local concentration, and laser Doppler velocimetry. The method developed provides an accurate measurement of the concentration-velocity cross-correlation. The latter is a parameter linked to the eddy diffusivity tensor of a passive contaminant. This method was tested with a turbulent submerged free jet and it allowed the determination of the mean field of concentration and velocity, the concentration-velocity cross-correlation, and the local eddy diffusivity.List of symbols C molar concentration - c fluctuating part of the concentration - mean value of the concentration - concentration-velocity cross-correlation - D molecular diffusivity - (D eddy) ij eddy diffusivity tensor - I abs absorbed intensity - I e local incident intensity - K opt optical constant - N number of samples - r c half-width radius for the concentration profile - r v half-width radius for the velocity profile - S f fluorescence signal - Sc Schmidt number - V c collection volume - U velocity - U e flow velocity in the channel - U i injection velocity Greek symbols kinetic energy dissipation rate - 1 molar extinction coefficient for the laser radiation (in m2mol–1l–1) - 2 molar extinction coefficient for the fluorescence signal (in m2mol–1l–1) - quantum yield - c Batchelor scale - k Kolmogorov scale - v kinematic viscosity - normalized values  相似文献   

4.
The harmonic content of the nonlinear dynamic behaviour of 1% polyacrylamide in 50% glycerol/water was studied using a standard Model R 18 Weissenberg Rheogoniometer. The Fourier analysis of the Oscillation Input and Torsion Head motions was performed using a Digital Transfer Function Analyser.In the absence of fluid inertia effects and when the amplitude of the (fundamental) Oscillation Input motion I is much greater than the amplitudes of the Fourier components of the Torsion Head motion Tn empirical nonlinear dynamic rheological propertiesG n (, 0),G n (, 0) and/or n (, 0), n (, 0) may be evaluated without a-priori-knowledge of a rheological constitutive equation. A detailed derivation of the basic equations involved is presented.Cone and plate data for the third harmonic storage modulus (dynamic rigidity)G 3 (, 0), loss modulusG 3 (, 0) and loss angle 3 (, 0) are presented for the frequency range 3.14 × 10–2 1.25 × 102 rad/s at two strain amplitudes, CP 0 = 2.27 and 4.03. Composite cone and plate and parallel plates data for both the third and fifth harmonic dynamic viscosities 3 (, 0), S (, 0) and dynamic rigiditiesG 3 (, 0),G 5 (, 0) are presented for strain amplitudes in the ranges 1.10 CP 0 4.03 and 1.80 PP 0 36 for a single frequency, = 3.14 × 10–1 rad/s. Good agreement was obtained between the results from both geometries and the absence of significant fluid inertia effects was confirmed by the superposition of the data for different gap widths.  相似文献   

5.
Zusammenfassung Zur Berechnung der dynamischen Idealviskosität Ideal (T) und der Idealwärmeleitfähigkeit ideal (T) benötigt man die kritische TemperaturT kr, das kritische spezifische Volum kr, die MolmasseM, den kritischen Parameter kr und die molare isochore WärmekapazitätC v(T). Sowohl das theoretisch, als auch das empirisch abgeleitete erweiterte Korrespondenzgesetz ergeben eine für praktische Zwecke ausreichende Genauigkeit für die Meßwertwiedergabe, die bei den assoziierenden Stoffen und den Quantenstoffen jedoch geringer ist als bei den Normalstoffen.
The extended correspondence law for the ideal dynamic viscosity and the ideal thermal conductivity of pure substances
For the calculation of the ideal dynamic viscosity Ideal (T) and the ideal thermal conductivity ideal (T) the critical temperatureT kr, the critical specific volumev kr, the molecular massM, the critical parameter kr, and the molar isochoric heat capacityC v(T) is needed. Not only the theoretically determined but also the empirically determined extended correspondence law gives for practical use a good representation of the measured data, which for the associating substances and the quantum substances is not so good as for the normal substances.
  相似文献   

6.
Existence theorem for a minimum problem with free discontinuity set   总被引:6,自引:0,他引:6  
We study the variational problem Where is an open set in n ,n2gL q () L (), 1q<+, O<, <+ andH n–1 is the (n–1)-dimensional Hausdorff Measure.  相似文献   

7.
The one-phase Darcy continuity equation, including the quadratic gradient term, is considered. The exact linearization of the equation is found by a functional transformation for an arbitrary spatial dimension in the limit case where the constant fluid compressibility is much more dominant than the constant compressibilities of the reservoir parameters.The equation permits a solution representing a localized wave travelling through a one-dimensional reservoir without changing its form. This is the actual long-time limit of the transient solution for a constant sandface-rate injection of a compressible fluid with a constant compressibility if the fluid is much more compressible than the matrix. A solitary wave solution is not possible for production.A fully developed solitary wave would appear only for very high pressure increases, but the first signs of the emerging solitary wave are detectable at the sandface for moderate pressure increases which can appear under physical reservoir conditions.Latin symbols a Dimensionless wave propagation velocity - A N Sandface area (N = 0, 1, 2) - c 1, c 2 Sums of compressibilities - c x Generic (generalized) compressibility - c Fluid compressibility - c h Reservoir height (i.e. bulk volume) compressibility (N = 0, 1) - c k , c , c Generalized compressibilities - D Spatial reservoir dimensionality (D = 1, 2, 3) - f Fractional change of p n1 due to nonlinear effects - h Reservoir height (proportional to bulk volume for N = 0, 1) - Horizontal reservoir width (N = 0) - k Reservoir permeability - K N Constant with dimension of pressure (N = 0, 1, 2) - n Sum index - N Integer variable (N = D – 1) - p Reservoir pressure - p* Overburden pressure - p D Dimensionless (scaled) version of p - p 0 Initial pressure - q Volumetric flow rate referred to sandface - r Radial (or linear) spatial distance from center of well - r w Well radius - r e External reservoir radius (or length) from center of well - t Time variable - t f Injection/production time corresponding to fraction f - T Cole-Hopf-transformed version of dimensionless pressure y - u Rescaled (dimensionless) version of v D - v Darcy velocity - v d Dimensionless (scaled) version of v - x Generic symbol in compressibility expression (also used for auxiliary function and for auxiliary variable) - y Rescaled (dimensionless) version of p D - z Dimensionless (scaled) version of r Greek symbols Coefficient of inertial resistance - Variable in wave solution for y - p n1 Absolute change in physical sandface pressure due to production or injection - p Pressure change over (dimensionless) distance behind and far away from front - r Physical distance at constant time corresponding to - Characteristic (dimensionless) width of solitary wave - Formation porosity - 1, 2 Integration constants - Dimensionless (scaled) length of finite reservoir - Fluid viscosity - Fluid density - Dimensionless (scaled) version of t - Wave solution for dimensionless pressure y - Integer variable (±1) distinguishing between production and injection  相似文献   

8.
The cross-correlation technique and Laser Induced Fluorescence (LIF) have been adopted to measure the time-dependent and two-dimensional velocity and temperature fields of a stably thermal-stratified pipe flow. One thousand instantaneous and simultaneous velocity and temperature maps were obtained at overall Richardson numberRi = 0 and 2.5, from which two-dimensional vorticity, Reynolds stress and turbulent heat flux vector were evaluated. The quasi-periodic inclined vortices (which connected to the crest) were revealed from successive instantaneous maps and temporal variation of vorticity and temperature. It has been recognized that these vortices are associated with the crest and valley in the roll-up motion.List of symbols A Fraction of the available light collected - C Concentration of fluorescence - D Pipe diameter - I Fluorescence intensity - L Sampling length along the incident beam - I 0 Intensity of an excitation beam - I c (T) Calibration curve between temperature and fluorescence intensity - I ref Reference intensity of fluorescence radiation - Re b Reynolds number based on bulk velocity,U b D/v - Ri Overall Richardson number based on velocity difference,gDT/U 2 - t Time - t Time interval between the reference and corresponding matrix - T Temperature - T 1,T 2 Temperature of lower and upper layer - T * Normalized temperature, (T–T 1)/T - T c (I) Inverse function of temperature as a function ofI c - T ref Reference temperature - T Temperature difference between upper and lower flow,T 2T 1 - U 1 Velocity of lower stream - U 2 Velocity of upper stream - U b Bulk velocity - U c Streamwise mean velocity atY/D=0 - U Streamwise velocity difference between upper and lower flow,U 1U 2 - u, v, T Fluctuating component ofU, V, T - U, V Velocity component of X, Y direction - X Streamwise distance from the splitter plate - Y Transverse distance from the centerline of the pipe - Z Spanwise distance from the centerline of the pipe - Quantum yield - Absorptivity - vorticity calculated from a circulation - Kinematic viscosity - circulation  相似文献   

9.
In this paper we develop the averaged form of the Stokes equations in terms of weighting functions. The analysis clearly indicates at what point one must choose a media-specific weighting function in order to achieve spatially smoothed transport equations. The form of the weighting function that produces the cellular average is derived, and some important geometrical theorems are presented.Roman Letters A interfacial area of the- interface associated with the local closure problem, m2 - A e area of entrances and exits for the-phase contained within the averaging system, m2 - A p surface area of a particle, m2 - d p 6V p/Ap, effective particle diameter, m - g gravity vector, m/s2 - I unit tensor - K m permeability tensor for the weighted average form of Darcy's law, m2 - L general characteristic length for volume averaged quantities, m - L p general characteristic length for volume averaged pressure, m - L characteristic length for the porosity, m - L v characteristic length for the volume averaged velocity, m - l characteristic length (pore scale) for the-phase - l i i=1, 2, 3 lattice vectors, m - (y) weighting function - m(–y) (y), convolution product weighting function - v special weighting function associated with the traditional averaging volume - m v special convolution product weighting function associated with the traditional averaging volume - m g general convolution product weighting function - m V unit cell convolution product weighting function - m C special convolution product weighting function for ordered media which produces the cellular average - m D special convolution product weighting function for disordered media - m M master convolution product weighting function for ordered and disordered media - n unit normal vector pointing from the-phase toward the-phase - p pressure in the-phase, N/m2 - pm superficial weighted average pressure, N/m2 - p m intrinsic weighted average pressure, N/m2 - p traditional intrinsic volume averaged pressure, N/m2 - p p p m , spatial deviation pressure, N/m2 - r 0 radius of a spherical averaging volume, m - r m support of the convolution product weighting function, m - r position vector, m - r position vector locating points in the-phase, m - V averaging volume, m3 - V volume of the-phase contained in the averaging volume, m3 - V cell volume of a unit cell, m3 - V velocity vector in the-phase, m/s - vm superficial weighted average velocity, m/s - v m intrinsic weighted average velocity, m/s - V volume of the-phase contained in the averaging volume, m3 - V p volume of a particle, m3 - v traditional superficial volume averaged velocity, m/s - v v p m spatial deviation velocity, m/s - x position vector locating the centroid of the averaging volume or the convolution product weighting function, m - y position vector relative to the centroid, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters indicator function for the-phase - Dirac distribution associated with the- interface - V /V, volume average porosity - m m * . weighted average porosity - mass density of the-phase, kg/m3 - viscosity of the-phase, Ns/m2 - V /V, volume fraction of the-phase  相似文献   

10.
Finite-difference solution of MHD flow past an impulsively started vertical infinite plate in an electrically conducting fluid has been presented on taking into account the viscous dissipative heat. Results for velocity and temperature are shown graphically whereas the numerical values of the skin-friction and the rate of heat transfer are entered in the table. The results are discussed in terms of the parameters M (the Hartmann number), G (the Grashof number, G>0, cooling of the plate by free convection, G<0, heating of the plate by free convection currents), E (the Eckert number) and P (the Prandtl number).Nomenclature B 0 applied magnetic field - c p specific heat at constant pressure - g acceleration due to gravity - k thermal conductivity - t time - T temperature of the fluid near the plate - T temperature of the fluid far away from the plate - U 0 velocity of the plate - u velocity of the fluid - coefficient of volume expansion - kinematic viscosity - scalar electrical conductivity - coefficient of viscosity - density of the fluid  相似文献   

11.
A computerized infrared (IR) scanning radiometer is employed to characterize the boundary layer development over a model wing, having a Göttingen 797 cross-section, by measuring the temperature distribution over its heated surface. The Reynolds analogy is used to relate heat transfer measurements to skin friction. The results show that IR thermography is capable of rapidly detecting location and extent of transition and separation regions of the boundary layer over the whole surface of the tested model wing. Thus, the IR technique appears to be a suitable and effective diagnostic tool for aerodynamic research in wind tunnels.List of symbols c airfoil chord - c f local skin friction coefficient = 2/( V 2) - c p specific heat coefficient at constant pressure - h local convective heat transfer coefficient - Nu Nusselt number = h x/ - Nu c Nusselt number based on airfoil chord = h c/ - Pr Prandtl number c p / - Q j wall heat flux due to Joule heating - Q l heat flux loss - Re Reynolds number V x/ - Re c Reynolds number based on airfoil chord = V c/ - St Stanton number = h/c p V - T w wall temperature - T aw adiabatic wall temperature - V velocity of the free stream - x chordwise spatial coordinate - angle of attack - thermal conductivity coefficient - dynamic viscosity coefficient - mass density - wall shear stress  相似文献   

12.
The slip hypothesis, based on thermodynamical arguments, has been extended to obtain the flow characteristics of polymer solutions flowing in a nonhomogeneous flow field. An asymptotic analysis, valid for both channel and falling film flows, is presented that predicts the flow enhancement due to polymer migration. Concentration-viscosity coupling is shown to be a critical factor in the hydrodynamic analysis. The analysis, which essentially provides an upper bound on flow enhancement, explicitly accounts for the influence of wall shear stress, initial polymer concentration etc. A comparison with the pertinent experimental data shows reasonable agreement. c concentration - c 0 concentration in shear-free region - c i initial concentration - d rate of deformation tensor - g acceleration due to gravity - g 1 function defined in eq. [13] or [15] - g 2 function defined in eq. [18] or [20] - H half-channel thickness or film thickness - K gas law constant - L length of the channel or film - q flow rate per unit width - q * normalized flow rate - T temperature - v velocity - V mean velocity - y transverse distance - y c location of solvent layer - w s - w /c 0 KT - /t convected derivative - dimensionless cenentration,c/c 0 - c dimensionless interface concentration - w dimensionless wall concentration - relaxation time - µ eff effective viscosity - µ s solvent viscosity - dimensionless transverse distance,y/H - c dimensionless interface location - density - stress tensor - w wall shear stress - c i KT/ w - ns no slip NCL-Communication No. 3155  相似文献   

13.
Conclusions The qualitative behavior of the displacement (t) and the radius R(t) during the different phases of the motion is illustrated in the diagram of Fig. 6.1.After the first impact at t = 0 the displacement (t) varies according to (5.2). If the first maximum of (t) is higher than 1 then at time t 1 the graph of (t) intersects the straight line = cand detachment first occurs. In the second phase the dependance of on t is expressed by (5.6). The detachment will end at the instant t 2 when vanishes.The radius R remains equal to R 0 until (t) reaches the critical value 1 = c that is at t = t 1. After t 1, R(t) will decrease according to (4.4) up to its final value 2.A rather unexpected property of the solution is that the greatest elongation is finite for every non-vanishing value of the ratio .To Jerry Ericksen for his 60th birthday  相似文献   

14.
Numerical solutions to convection of a fluid which is heated, and to which salt is introduced from the bottom, have been obtained. Although different in boundary conditions from the conditions in the study of Huppert and Moore, qualitatively the flow investigated here has many features the same as theirs. The differences are discussed and solutions are given for two fluids whose Prandtl numbers are 1 and 7 and ratio of molecular and thermal diffusivities is 0.1. The fields of temperature and salinity, and the stream patterns are shown in contour plots. The saline and thermal Nusselt numbers are given as functions of the thermal Rayleigh number.Nomenclature A aspect ratio of the enclosure - g gravitational acceleration - H the height of the enclosure - k S molecular diffusivity of salt - k T molecular diffusivity of heat - N S averaged saline Nusselt number - N T averaged thermal Nusselt number - P transported variable of temperature, salinity, or vorticity - p pressure above its hydrostatic value - Pr Prandtl number - velocity vector - R S saline Rayleigh number - R T thermal Rayleigh number - S salinity - S slainity difference between the top and the bottom - S 0 salinity at the top surface - S r salinity at the reference state=S0+S/2 - T temperature - T temperature difference between the top and and the bottom - T 0 temperature at the top surface - T r temperature at the reference state=T0+T/2 - t time - u velocity component in the horizontal direction - transport velocity - v velocity component in the vertical direction - W the width of the enclosure - x horizontal coordinate - x mesh size in the horizontal direction - y vertical coordinate Greek Letters coefficient of thermal expansion - coefficient of volumetric expansion produced by salt - kinematic viscosity - ratio of diffusivities - vorticity - density - r density at the reference state - density difference between the top and the bottom - streamfunction  相似文献   

15.
Laser velocimetry measurements in a horizontal gas-solid pipe flow   总被引:1,自引:0,他引:1  
This paper presents laser measurements of particle velocities in a horizontal turbulent two-phase pipe flow. A phase Doppler particle analyzer, (PDPA), was used to obtain particle size, velocity, and rms values of velocity fluctuations. The particulate phase consisted of glass spheres 50 m in diameter with the volume fraction of the suspension in the range p=10-4 to p=10-3. The results show that the turbulence increases with particle loading.List of symbols a particle diameter - C va velocity diameter cross-correlation - d pipe diameter - Fr 2 Froude number - g gravitational constant - p(a) Probability density of the particle diameter - Re pipe Reynolds number based on the friction velocity - T characteristic time scale of the energy containing eddies - T L integral scale of the turbulence sampled along the particle path - u, U, u characteristic fluid velocities: fluctuating, mean and friction - v characteristic velocity of the paricle fluctuations - f expected value of any random variable f - f¦g expected value of f given a value of the random variable g - p particle volume fraction - p particle response time - absolute fluid viscosity - v kinematic fluid viscosity - p, f densities, particle and fluid - a 2 particle diameter variance - va 2 velocity variance due to the particle diameter variance - vT 2 total particle velocity variance - vt 2 particle velocity variance due to the response to the turbulent field  相似文献   

16.
Theoretical investigation has been carried out of laminar thermal boundary layer response to harmonic oscillations in velocity associated with a progressive wave imposed on a steady free stream velocity and convected in the free stream direction. Series solutions are derived both to velocity and temperature field and the resulting equations are solved numerically. The functions affecting the temperature field are shown graphically for different values of Prandtl number. It is observed that there is more reduction in the rate of heat transfer for P r<1 and a rise in the rate of heat transfer for P r>1 due to the presence of oscillatory free-stream.Nomenclature u, v velocity components in the x and y direction - x, y Cartesian coordinate axes - t time - U, U 0 instantaneous value of and mean free stream velocity - density of fluid - kinematic viscosity - T, T w, T temperature of the fluid, wall and free stream fluid - c p specific heat at constant pressure - thermal diffusivity - amplitude of free stream velocity - frequency - p non-dimensional temperature (TT /T wT ) - P r Prandtl number (c p/K) - E c Eckert number (U 0 2 /c p(T wT )) - a parameter ( ) - 0 boundary layer thickness of the oscillation of a harmonic oscillation of frequency ( ) - ordinary boundary layer thickness ( ) - time-averaged, time-independent external velocity - A, B, C, D, E, K, L, M, N, P functions used in expansion for u and - Nu Nusselt number (hx/k) - T w–% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8V4rqqrFfpeea0Jc9yq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepGe9fr-xfr-x% frpeWZqaaeaabiGaciaacaqabeaadaqaaqaaaOqaaiaacIcadaGcaa% qaaiaadAhacaWG4bGaai4laiqadwfagaqeaaWcbeaakiaacMcaaaa!3CA6!\[(\sqrt {vx/\bar U} )\] - k thermal conductivity  相似文献   

17.
If the viscosity can be expressed in the form = (T)f(), the walls are at a constant temperatureT 0, and the extra stress, velocity and temperature fields are fully developed, then the wall shear rate can be calculated by applying the Weissenberg-Rabinowitsch operator toF c Q instead of to the flow rateQ, whereF c is a correction factor which differs from 1 when the temperature field is non-uniform; the isothermal equation relating the wall shear stress and pressure gradient is still valid. For the case in whcih = 0|| n /(1 +(TT 0)), wheren, 0, and are independent of shear stress and temperatureT, an exact analytical expression forF c in terms of the Nahme-Griffith numberNa andn is obtained. Use of this expression gives agreement with data obtained for degassed decalin ( = 2.5 mPa s) from a new miniature slit-die viscometer at shear rates up to 5 × 106s–1; here, the correction is only 7%,Na is 1.3, andGz, the Graetz number at the die exit, is 119. For a Cannon standard liquidS6 ( = 9 mPa s), agreement extends up to 5 × 105s–1; at 2×106s–1 (whereNa = 7.2 andGz = 231), the corrections are 11% (measured) and 36% (calculated).Notation x, y Cartesian coordinates - v x ,v velocity inx-direction, dimensionless velocity - p xx ,p yy normal stress onx- andy-planes - N 1 first normal stress difference - shear stress ony-planes acting inx-direction - w value of shear stress at the wall - shear rate, shear rate at the wall - Q, Q flow rate (Eqs. (2.13), (2.15)) - T, T 0 temperature, temperature at the wall - ø, dimensionless temperature (Eqs. (2.24), (2.25)) - h, w half of die height, width of die - R diameter of a tube - , 0 viscosity, viscosity atT = T 0 - viscosity-temperature coefficient - k thermal conductivity - c p specific heat at constant pressure - n, m dimensionless parameters characterizing shear stress dependence of viscosity - Na Nahme Griffith number (Eq. (2.21)) - Gz Graetz number (Eq. (5.1)) - F c viscous heating correction factor (Eq. (2.18)) - ( ) a function characterizing temperature dependence of viscosity (Eq. (2.8)) - J k ( ) Bessel function of the first kind This paper is dedicated to Professor Hanswalter Giesekus on the occasion of his retirement as Editor of Rheologica Acta.  相似文献   

18.
Summary Stress analysis has been carried out for a finite cylinder subjected to arbitrarily distributed axisymmetrical surface loads. Direct stress x in the axial direction is assumed to be of the form x = 0+r 1 +r 2 where 0 to 2 are functions of x. Using the equations of equilibrium and compatibility the other direct stresses and the shearing stress are expressed by 1 and 2. Fundamental equations governing 1 and 2 are introduced using the variational principle of complementary energy. From the results of the present analysis it is evident that the boundary conditions can be satisfied completely even for the case where the external forces are specified in complicated form, and that more accurate solutions can easily be obtained by introducing additional terms in x.
Spannungsanalyse für den Zylinder unter axialsymmetrischer Last in beliebiger Verteilung
Übersicht Für einen endlichen Zylinder unter axialsymmetrischer Oberflächenlast in beliebiger Verteilung werden die Spannungen ermittelt. Die Normalspannung in Axialrichtung wird in der Form x = 0+r 1 +r 2 angesetzt mit 0, 1, 2 als Funktionen von x. Mit Hilfe der Gleichgewichtsund Verträglichkeitsbedingungen werden die anderen Normalspannungen und die Schubspannung durch 1 und 2 ausgedrückt. Über das Variationsprinzip für die Komplementärenergie werden die grundlegenden Gleichungen für 1 und 2 eingeführt. Die Ergebnisse zeigen, daß die Randbedingungen selbst für komplizierte Belastungsarten vollständig erfüllbar sind und mit zusätzlichen Termen in x mühelos noch genauere Lösungen bestimmt werden können.
  相似文献   

19.
The results of laboratory observations of the deformation of deep water gravity waves leading to wave breaking are reported. The specially developed visualization technique which was used is described. A preliminary analysis of the results has led to similar conclusions than recently developed theories. As a main fact, the observed wave breaking appears as the result of, first, a modulational instability which causes the local wave steepness to approach a maximum and, second, a rapidly growing instability leading directly to the breaking.List of symbols L total wave length - H total wave height - crest elevation above still water level - trough depression below still water level - wave steepness =H/L - crest steepness =/L - trough steepness =/L - F 1 forward horizontal length from zero-upcross point (A) to wave crest - F 2 backward horizontal length from wave crest to zero-downcross point (B) - crest front steepness =/F 1 - crest rear steepness =/F 2 - vertical asymmetry factor=F 2/F 1 (describing the wave asymmetry with respect to a vertical axis through the wave crest) - µ horizontal asymmetry factor=/H (describing the wave asymmetry with respect to a horizontal axis: SWL) - T 0 wavemaker period - L 0 theoretical wave length of a small amplitude sinusoïdal wave generated at T inf0 sup–1 frequency - 0 average wave height  相似文献   

20.
In this work, we make use of numerical experiments to explore our original theoretical analysis of two-phase flow in heterogeneous porous media (Quintard and Whitaker, 1988). The calculations were carried out with a two-region model of a stratified system, and the parameters were chosen be consistent with practical problems associated with groundwater flows and petroleum reservoir recovery processes. The comparison between theory (the large-scaled averaged equations) and experiment (numerical solution of the local volume averaged equations) has allowed us to identify conditions for which the quasi-static theory is acceptable and conditions for which a dynamic theory must be used. Byquasi-static we mean the following: (1) The local capillary pressure,everywhere in the averaging volume, can be set equal to the large-scale capillary pressure evaluated at the centroid of the averaging volume and (2) the large-scale capillary pressure is given by the difference between the large-scale pressures in the two immiscible phases, and is therefore independent of gravitational effects, flow effects and transient effects. Bydynamic, we simply mean a significant departure from the quasi-static condition, thus dynamic effects can be associated with gravitational effects, flow effects and transient effects. To be more precise about the quasi-static condition we need to refer to the relation between the local capillary pressure and the large-scale capillary pressure derived in Part I (Quintard and Whitaker, 1990). Herep c ¦y represents the local capillary pressure evaluated at a positiony relative to the centroid of the large-scale averaging volume, and {p c x represents the large-scale capillary pressure evaluated at the centroid.In addition to{p c } c being evaluated at the centroid, all averaged terms on the right-hand side of Equation (1) are evaluated at the centroid. We can now write the equations describing the quasi-static condition as , , This means that the fluids within an averaging volume are distributed according to the capillary pressure-saturation relationwith the capillary pressure held constant. It also means that the large-scale capillary pressure is devoid of any dynamic effects. Both of these conditions represent approximations (see Section 6 in Part I) and one of our main objectives in this paper is to learn something about the efficacy of these approximations. As a secondary objective we want to explore the influence of dynamic effects in terms of our original theory. In that development only the first four terms on the right hand side of Equation (1) appeared in the representation for the local capillary pressure. However, those terms will provide an indication of the influence of dynamic effects on the large-scale capillary pressure and the large-scale permeability tensor, and that information provides valuable guidance for future studies based on the theory presented in Part I.Roman Letters A scalar that maps {}*/t onto - A scalar that maps {}*/t onto - A interfacial area between the -region and the -region contained within, m2 - A interfacial area between the -region and the -region contained within, m2 - A interfacial area between the -region and the -region contained within, m2 - a vector that maps ({}*/t) onto , m - a vector that maps ({}*/t) onto , m - b vector that maps ({p}– g) onto , m - b vector that maps ({p}– g) onto , m - B second order tensor that maps ({p}– g) onto , m2 - B second order tensor that maps ({p}– g) onto , m2 - c vector that maps ({}*/t) onto , m - c vector that maps ({}*/t) onto , m - C second order tensor that maps ({}*/t) onto , m2 - C second order tensor that maps ({}*/t) onto . m2 - D third order tensor that maps ( ) onto , m - D third order tensor that maps ( ) onto , m - D second order tensor that maps ( ) onto , m2 - D second order tensor that maps ( ) onto , m2 - E third order tensor that maps () onto , m - E third order tensor that maps () onto , m - E second order tensor that maps () onto - E second order tensor that maps () onto - p c =(), capillary pressure relationship in the-region - p c =(), capillary pressure relationship in the-region - g gravitational vector, m/s2 - largest of either or - - - i unit base vector in thex-direction - I unit tensor - K local volume-averaged-phase permeability, m2 - K local volume-averaged-phase permeability in the-region, m2 - K local volume-averaged-phase permeability in the-region, m2 - {K } large-scale intrinsic phase average permeability for the-phase, m2 - K –{K }, large-scale spatial deviation for the-phase permeability, m2 - K –{K }, large-scale spatial deviation for the-phase permeability in the-region, m2 - K –{K }, large-scale spatial deviation for the-phase permeability in the-region, m2 - K * large-scale permeability for the-phase, m2 - L characteristic length associated with local volume-averaged quantities, m - characteristic length associated with large-scale averaged quantities, m - I i i = 1, 2, 3, lattice vectors for a unit cell, m - l characteristic length associated with the-region, m - ; characteristic length associated with the-region, m - l H characteristic length associated with a local heterogeneity, m - - n unit normal vector pointing from the-region toward the-region (n =–n ) - n unit normal vector pointing from the-region toward the-region (n =–n ) - p pressure in the-phase, N/m2 - p local volume-averaged intrinsic phase average pressure in the-phase, N/m2 - {p } large-scale intrinsic phase average pressure in the capillary region of the-phase, N/m2 - p local volume-averaged intrinsic phase average pressure for the-phase in the-region, N/m2 - p local volume-averaged intrinsic phase average pressure for the-phase in the-region, N/m2 - p –{p }, large scale spatial deviation for the-phase pressure, N/m2 - p –{p }, large scale spatial deviation for the-phase pressure in the-region, N/m2 - p –{p }, large scale spatial deviation for the-phase pressure in the-region, N/m2 - P c p –{p }, capillary pressure, N/m2 - {pc}c large-scale capillary pressure, N/m2 - r 0 radius of the local averaging volume, m - R 0 radius of the large-scale averaging volume, m - r position vector, m - , m - S /, local volume-averaged saturation for the-phase - S * {}*{}*, large-scale average saturation for the-phaset time, s - t time, s - u , m - U , m2 - v -phase velocity vector, m/s - v local volume-averaged phase average velocity for the-phase in the-region, m/s - v local volume-averaged phase average velocity for the-phase in the-region, m/s - {v } large-scale intrinsic phase average velocity for the-phase in the capillary region of the-phase, m/s - {v } large-scale phase average velocity for the-phase in the capillary region of the-phase, m/s - v –{v }, large-scale spatial deviation for the-phase velocity, m/s - v –{v }, large-scale spatial deviation for the-phase velocity in the-region, m/s - v –{v }, large-scale spatial deviation for the-phase velocity in the-region, m/s - V local averaging volume, m3 - V volume of the-phase in, m3 - V large-scale averaging volume, m3 - V capillary region for the-phase within, m3 - V capillary region for the-phase within, m3 - V c intersection of m3 - V volume of the-region within, m3 - V volume of the-region within, m3 - V () capillary region for the-phase within the-region, m3 - V () capillary region for the-phase within the-region, m3 - V () , region in which the-phase is trapped at the irreducible saturation, m3 - y position vector relative to the centroid of the large-scale averaging volume, m Greek Letters local volume-averaged porosity - local volume-averaged volume fraction for the-phase - local volume-averaged volume fraction for the-phase in the-region - local volume-averaged volume fraction for the-phase in the-region - local volume-averaged volume fraction for the-phase in the-region (This is directly related to the irreducible saturation.) - {} large-scale intrinsic phase average volume fraction for the-phase - {} large-scale phase average volume fraction for the-phase - {}* large-scale spatial average volume fraction for the-phase - –{}, large-scale spatial deviation for the-phase volume fraction - –{}, large-scale spatial deviation for the-phase volume fraction in the-region - –{}, large-scale spatial deviation for the-phase volume fraction in the-region - a generic local volume-averaged quantity associated with the-phase - mass density of the-phase, kg/m3 - mass density of the-phase, kg/m3 - viscosity of the-phase, N s/m2 - viscosity of the-phase, N s/m2 - interfacial tension of the - phase system, N/m - , N/m - , volume fraction of the-phase capillary (active) region - , volume fraction of the-phase capillary (active) region - , volume fraction of the-region ( + =1) - , volume fraction of the-region ( + =1) - {p } g, N/m3 - {p } g, N/m3  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号