共查询到20条相似文献,搜索用时 15 毫秒
1.
Jyothi T. Varkey Sunny Augustine G. Groeninckx S. S. Bhagawan S. Someswara Rao Sabu Thomas 《Journal of Polymer Science.Polymer Physics》2000,38(16):2189-2211
The morphology and mechanical and viscoelastic properties of a series of blends of natural rubber (NR) and styrene butadiene rubber (SBR) latex blends were studied in the uncrosslinked and crosslinked state. The morphology of the NR/SBR blends was analyzed using a scanning electron microscope. The morphology of the blends indicated a two phase structure in which SBR is dispersed as domains in the continuous NR matrix when its content is less than 50%. A cocontinuous morphology was obtained at a 50/50 NR/SBR ratio and phase inversion was seen beyond 50% SBR when NR formed the dispersed phase. The mechanical properties of the blends were studied with special reference to the effect of the blend ratio, surface active agents, vulcanizing system, and time for prevulcanization. As the NR content and time of prevulcanization increased, the mechanical properties such as the tensile strength, modulus, elongation at break, and hardness increased. This was due to the increased degree of crosslinking that leads to the strengthening of the 3‐dimensional network. In most cases the tear strength values increased as the prevulcanization time increased. The mechanical data were compared with theoretical predictions. The effects of the blend ratio and prevulcanization on the dynamic mechanical properties of the blends were investigated at different temperatures and frequencies. All the blends showed two distinct glass‐transition temperatures, indicating that the system is immiscible. It was also found that the glass‐transition temperatures of vulcanized blends are higher than those of unvulcanized blends. The time–temperature superposition and Cole–Cole analysis were made to understand the phase behavior of the blends. The tensile and tear fracture surfaces were examined by a scanning electron microscope to gain an insight into the failure mechanism. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2189–2211, 2000 相似文献
2.
Stress-induced crystallization in a rapidly stretched natural rubber gum vulcanizate has been studied using thermal techniques to follow the development of crystallinity. A special-purpose analog computer has been assembled and used on-line to process the thermal and mechanical data obtained in high speed tensile testing. Roughly first-order room temperature crystallization kinetics curves were obtained having time constants of 50–60 msec in the range of 400–540% extension. While the rate of this rapid, presumably primary crystallization appears rather insensitive to elongation in this limited range, the extent of crystallization at 400 msec increases smoothly from zero at 340% elongation to around 18% at 540% elongation. It is shown that our high-speed tensile tester can stretch this vulcanizate fast enough that most of the crystallization takes place after extension has been completed. Stress-strain curves obtained at this high rate are compared with those obtained at lower rates where crystallization takes place during the stretching. 相似文献
3.
S. Goyanes C.C. Lopez G.H. Rubiolo F. Quasso A.J. Marzocca 《European Polymer Journal》2008,44(5):1525-1534
Blends of natural rubber (NR) and styrene butadiene rubber (SBR) were prepared with sulfur and n-t-butyl-2-benzothiazole sulfonamide (TBBS) as accelerator, varying the amount of each polymer in the blend. Samples were analysed by rheometer curing at 433 K until their maximum torque was reached. The miscibility among the constituent polymers of the cured compounds was studied in a broad range of temperatures by means of differential scanning calorimetry, analyzing the glass transition temperatures of the samples. The specific heat capacity of the compounds was also determined. Thermal diffusivity of the samples was measured in the temperature range from 130 to 400 K with a new device that performs measurements in vacuum. The thermal results are explained on the basis of the structure formed during the vulcanization of the samples considering the variation of the crosslink density of each phase. Finally, a serial thermal conduction model that takes into account the contribution of each phase to the thermal diffusivity was used to fit the experimental results. 相似文献
4.
In order critically to evaluate the previous morphological interpretations of stress relaxation during oriented crystallization, a reexamination was made of the relaxation behavior of the same oriented natural rubber material used for the x-ray investigation in Part II of this series. Our results were found to be in qualitative agreement with previously published reports. Comparison of stress-relaxation rates at low temperatures for samples with strains of 200% or more with crystallization rates at room temperature by others for similar elongations indicates a dual nature in the strain-induced crystallization process. This conclusion is in full agreement with the indication of dual crystalline morphologies, namely, fibrillar and lamellar, for both electron microscopy and x-ray investigations on highly stretched samples reported in Parts I and II. Examination of stress-relaxation data in light of morphological evidence for oriented crystallization indicates that caution must be exercised in attaching morphological significance to the Avrami exponent n obtained from stress-relaxation or crystallization data. 相似文献
5.
Nabil Hayeemasae Indra Surya Hanafi Ismail 《International Journal of Polymer Analysis and Characterization》2016,21(5):396-407
Biocompatibilizer-based refined, bleached, deodorized palm stearin was successfully used as compatibilizer for natural rubber/recycled ethylene–propylene–diene rubber (NR/R-EPDM) blends. It seems effective in improving the state of cure, tensile properties, as well as the swelling resistance and morphology of the blends, indicating an improvement in compatibility between the NR matrix and R-EPDM rendered by biocompatibilizer. This was clearly verified by the dynamic mechanical properties of the blends. The dynamic responses obtained were clearly corresponding to the swelling result. It proves that the cross-link density plays a major role in the changes of storage modulus and degree of entanglement. 相似文献
6.
The morphology and crystallization behavior of blends of polypropylene (PP) and an ethylene-based thermoplastic elastomer (TPO) were investigated by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The SEM images showed a two-phase morphology for these blends. As TPO was partially crystalline, two distinct peaks were observed in both heating and cooling scans of DSC. The crystallization temperature of TPO in blends was higher than pure TPO. In contrast, the crystallization temperature of PP in blends was lower than pure PP. The crystallization behavior of blends was modeled by Avrami equation. It was observed that the presence of TPO accelerated the growth rate of crystals of PP in PP/TPO blends. 相似文献
7.
8.
《Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy》1991,47(9-10):1313-1319
The FT-Raman spectra of natural rubber and deproteinized natural rubber are presented as a function of time cold soaking at −25°C. The changes which occur in the spectra are related to the crystallization of the sample and are compared with those reported during the stress induced crystallization of crosslinked natural rubber. 相似文献
9.
Quentin Demassieux Daniel Berghezan Sabine Cantournet Henry Proudhon Costantino Creton 《Journal of Polymer Science.Polymer Physics》2019,57(12):780-793
We have investigated the structural changes occurring in highly crosslinked and carbon‐black filled natural rubber under uniaxial extension by small‐ and wide‐angle X‐ray scattering using synchrotron radiation. The experiments focused on strain‐induced crystallization (SIC) and nanocavitation and were carried out on a model series of materials as a function of temperature and aging conditions. We find that for all materials both SIC and cavitation decrease markedly with temperature and aging. However, the presence of carbon black filler shifts the ceiling temperature where SIC is observed to at least 120°C, presumably by a nucleating effect, maintaining the high strength of the elastomers. Interestingly, although in pure elastomers, the cavitation strength decreases with temperature, we find that in these filled elastomers the critical stress for the onset of cavitation increases significantly with temperature strongly suggesting that cavitation is due to the local confinement between fillers and supporting the idea of a glassy layer near the filler. Aging for 10 days at 110°C in oxygen‐free conditions decreases both SIC and cavitation and reduces the strength of the elastomer at high temperature. This is attributed to the formation of sulfur side chains hindering the crystallization. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 780–793 相似文献
10.
Thermal properties of compatibilized and filled natural rubber/acrylonitrile butadiene rubber blends
The thermal behaviour of natural rubber/acrylonitrile butadiene rubber (NR/NBR) was studied using thermogravimetry (TG) and differential scanning calorimetry (DSC) in terms of blend ratio, crosslinking systems, fillers and compatibilizer (neoprene) were analyzed. The presence of NBR markedly increases the thermal stability of their blends and it lies in between NR and NBR. DSC studies revealed the thermodynamic immiscibility of the NR/NBR blends by the presence of two distinct glass transition temperatures and the immiscibility was prominent even in the presence of a compatibilizer. 相似文献
11.
F. De Candia G. Romano R. Russo V. Vittoria 《Journal of Polymer Science.Polymer Physics》1982,20(9):1525-1531
Stress-induced crystallization of natural rubber networks is studied. The analysis is carried out using two different experimental techniques and the results are compared. In particular, the microcalorimetric and photoelastic results seem to be in disagreement, but the disagreement can be resolved by assuming that organization phenomena take place even at strains less than the critical value at which thermally detectable crystallization occurs. It is believed that such organization phenomena give rise to highly defective crystallites which behave as nucleation agents in the crystallization process that is induced at larger strains. 相似文献
12.
In this study, it was aimed to investigate octavinyl‐polyhedral oligomeric silsesquioxane (OV‐POSS) incorporation into natural rubber (NR)/butadiene rubber (BR) elastomer blends as a potential compatibilizer. The effects of OV‐POSS loading levels on the thermal, mechanical, morphological, and dynamic‐mechanical properties of elastomer blends were explored. Fourier‐Transform Infrared Spectrometer (FTIR), Temperature Scanning Stress Relaxation (TSSR), and Differential Scanning Calorimetry (DSC) results revealed the conceivable effect of OV‐POSS nanoparticles in the vulcanization through reacting with sulfur and/or elastomers. Scanning Electron Microscope (SEM), X‐Ray Diffraction (XRD), and tensile test measurements supported the improvement of mechanical properties due to homogeneous dispersion at low loading levels. On the other hand, high amount of OV‐POSS incorporation (7 and 10 phr) resulted in a decrease in mechanical properties, owing to the agglomeration of nanoparticles. According to contact angle and Dynamic mechanical analysis (DMA) results, it could be concluded that OV‐POSS nanoparticles were localized at the interface of the elastomers and enabled the compatibilization of immiscible NR/BR blends. 相似文献
13.
J. M. Chenal L. Chazeau Y. Bomal C. Gauthier 《Journal of Polymer Science.Polymer Physics》2007,45(8):955-962
This article is devoted to the cold crystallization of filled natural rubber with different types of filler such as carbon black, silica, and grafted silica. A large set of differential scanning calorimetry data is presented with various scanning rates, times, and temperatures of isothermal crystallization to display the factors affecting natural rubber (NR) crystallization. The crystallization kinetic measurements suggest that fillers can create a region with perturbed mobility where the kinetics of nucleation and/or growth are slowed down, the rest of the matrix being unperturbed. And, the final crystallization level indicates the existence of an excluded region for crystallization close to the filler surface. Furthermore, the presence of fillers appears less unfavorable to NR crystallization than chemical crosslinking. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 955–962, 2007 相似文献
14.
Low molecular weight natural rubber (LMWNR) obtained from natural rubber (NR) by depolymerization of natural rubber latex (NRL) was modified by epoxidation to 35% epoxide level to yield epoxidized low molecular weight natural rubber (ELMWNR). The ELMWNR was in turn modified in a solution of thioglycollic acid (TGA) (0.5 mol phr) to yield a product of 20% conversion of its initial LMWNR epoxide. Blends of NR with LMWNR, ELMWNR and epoxidized low molecular weight natural rubber thioglycollic acid (ELWMNR‐TGA) adduct were made. The mixes were vulcanized at 150°C for 20 min before determining the system parameters (n and k), the sorption (S), diffusion (D) and permeability (P) of the vulcanizates in acetaldehyde and formaldehyde solutions at three different temperatures (25, 40 and 60°C) for a period of 90 days. The sorption, diffusion and permeability of the vulcanizates were found to be temperature dependent. The vulcanizates containing ELMWNR were found not to be easily penetrated by both acetaldehyde and formaldehyde when compared with base mix A that is vulcanizates with only NR. The reaction system was found not to be spontaneous but dependent on the activation energies. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
15.
The thermal and crystallization behavior of the blends are studied by differential scanning calorimetry and XRD. The presence of the amorphous component in the blend is found to influence the non-isothermal crystallization of HDPE. The addition of small quantities of SBR resulted in an increase in the rate of crystallization whereas nucleation is delayed. As compared to HDPE, larger crystallite size, a narrower size distribution, were observed in low SBR (~up to 30?wt%) content blends. The half time of crystallization also found to reduce as the SBR content in the blend increased. However, a lower degree of crystallinity was observed in these blends. The results thus show that incorporation of SBR in HDPE, while accelerating the rate of crystallization, lower the degree of crystallization. The reduction in the overall crystallization rate at high-SBR content is attributed to a decrease in the growth rate in the later stages of crystallization. It is observed that in dynamically cross-linked blends, the presence of crosslinked SBR that can acts as heterogeneous nuclei facilitated the nucleation of HDPE. However, the crystal growth may be impeded. As a result the overall crystallinity of the crosslinked blends found to decrease. From XRD profiles it had seen that addition of SBR and dynamic crosslinking does not exert an effect on the crystalline structure of HDPE. The dynamic vulcanization of SBR/HDPE blends enhanced the process of crystallization of HDPE phase. These conclusions are supported by the thermal characterization (DSC) results also. 相似文献
16.
Seiichi Kawahara Oraphin Chaikumpollert Keiichi Akabori Yoshimasa Yamamoto 《先进技术聚合物》2011,22(12):2665-2667
The morphology of natural rubber was observed by transmission electron microscopy. Nanomatrix of non‐rubber components such as proteins and phospholipids was found to be inherently formed in natural rubber, in which natural rubber particles of about 0.5 µm in average diameter were dispersed. The nanomatrix of non‐rubber components disappeared after deproteinization of natural rubber with urea. Stress at break of serum rubber was higher than that of deproteinized natural rubber, while strain at break did not change. When the amount of the non‐rubber components increased, the stress at break became significantly dependent upon the amount of non‐rubber components. Viscoelastic properties of natural rubber were also dependent upon the nanomatrix of non‐rubber components. Storage modulus of natural rubber increased significantly, when the amount of the non‐rubber components increased. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
17.
Phase structure and crystallization behavior of polyethylene(PE) in its blends with cis-1,4-butadiene rubber(BR) at different blend ratios and sample preparation conditions were studied. The PE is finely dispersed in the BR matrix. For samples hot pressed at 145 °C, circular PE microdomains with randomly oriented PE lamellar aggregates were produced. The domain size and number increase with increasing PE content. When the PE content is over 10 wt%, most of the PE domains impinged each other. The separated PE domains are connected by PE stripes with parallel arranged lamellar aggregates. For samples hot pressed at 140 °C, elongated PE microdomains with oriented PE lamellar aggregates were obtained due to the shear flow. The crystallization of PE in the blends depends on the phase structure. Confined crystallization of PE occurs in small microdomains at relatively low temperature. With the increase of domain size, the crystallization ability of PE increases while the confined crystallization decreases. 相似文献
18.
Zhi‐Gang Wang Roger A. Phillips Benjamin S. Hsiao 《Journal of Polymer Science.Polymer Physics》2001,39(16):1876-1888
Morphology development during isothermal crystallization in equal molecular weight isotactic polypropylene (iPP), syndiotactic polypropylene (sPP), and iPP/sPP blends was studied with time‐resolved simultaneous small‐angle X‐ray scattering (SAXS) and wide‐angle X‐ray diffraction (WAXD) with synchrotron radiation. The sPP melting point is 15–20 °C below that of the iPP component, and sPP multiple melting is not affected by blending for 50–100 wt % sPP compositions. SAXS and WAXD (at 115 and 137.5 °C) show that sPP crystallizes more slowly than iPP. The sPP long spacing is larger than that of iPP at both crystallization temperatures, exhibits a broader distribution, and changes to a greater extent during crystallization. Differential scanning calorimetry (DSC) cooling and SAXS/WAXD measurements show iPP crystallizing first and nearly to completion before sPP in a 50:50 iPP/sPP blend. At 115 °C, iPP crystals nucleate sPP in a 50:50 blend and modify the sPP lamellar spacing. The nucleation does not overcome the large difference in the iPP and sPP rates at 137.5 °C. Before sPP crystallization in a 50:50 blend (115 °C), the iPP long spacing is not affected by molten sPP. The iPP long spacing is slightly expanded by molten sPP, and the WAXD induction time is delayed at 137.5 °C. The observed iPP long spacing in the presence of molten sPP is consistent with previously reported results for iPP/atactic polypropylene (aPP) blends of similar molecular weight. Quantitative differences between the two types of blends are consistent with previously reported thermodynamic rankings. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1876–1888, 2001 相似文献
19.
Zhi‐Gang Wang Roger A. Phillips Benjamin S. Hsiao 《Journal of Polymer Science.Polymer Physics》2000,38(19):2580-2590
Morphology development during isothermal crystallization in equal molecular weight isotactic polypropylene (iPP) and atactic polypropylene (aPP) blends was studied with time‐resolved simultaneous small‐angle X‐ray scattering (SAXS) and wide‐angle X‐ray scattering methods with synchrotron radiation. The final long period obtained after crystallization at 115 °C was nearly independent of blend composition up to 50 wt % aPP but showed an increase in the 80 wt % aPP blend. At a high crystallization temperature (137.5 °C), the increase in the final long period with aPP content was significant, and the evolution of iPP crystallinity was also affected. However, at low crystallization temperatures, the additive decrease of the crystallinity and the constant melting point with increasing aPP content suggest that the crystallizability and crystal morphology of iPP is not a strong function of aPP. The iPP/aPP blends showed a strong low‐angle SAXS upturn as a function of composition, which suggests the segregation of aPP on size scales larger than the lamellar spacing. A detailed analysis of the SAXS patterns indicates that aPP disrupts the ordering within the lamellar stacking. The results are generally consistent with predominantly interfibrillar incorporation of the aPP diluent within the microstructure, with only modest interlamellar incorporation dependent on the crystallization temperature. The findings can be attributed to the partial miscibility/mixing of the aPP and iPP components in the blend before crystallization, depending on the crystallization undercooling. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2580–2590, 2000 相似文献
20.
W. Salgueiro A. Somoza A. J. Marzocca I. Torriani M. A. Mansilla 《Journal of Polymer Science.Polymer Physics》2009,47(23):2320-2327
A small‐angle X‐ray scattering (SAXS) and swelling study of natural rubber and styrene–butadiene rubber blends (NR/SBR) is presented. To this aim, specimens of NR and SBR and blends with 75/25, 50/50, and 25/75 NR/SBR ratios (in phr) were prepared at a cure temperature of 433 K and the optimum cure time (t100). This time was obtained from rheometer torque curves. The system of cure used in the samples was sulfur/n‐t‐butyl‐2‐benzothiazole sulfenamide. From swelling tests of the cured samples, information about the molecular weight of the network chain between chemical crosslinks was obtained. For all cured compounds, in the Lorentz plots built from SAXS scattering curves, a maximum of the scattering vector q around 0.14 Å?1 was observed. However, the q position shows a linear‐like shift toward lower values when the SBR content in the SBR/NR blend increases. In pure NR or SBR the q values show a different tendency. The results obtained are discussed in terms of the existence of different levels of vulcanization for each single phase forming the blend and the existence of a third level of vulcanization located in the interfacial NR/SBR layer. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2320–2327, 2009 相似文献