首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper considers the cost-effective inventory control of work-in-process (WIP) and finished products in a two-stage distributed manufacturing system. The first stage produces a common WIP, and the second stage consists of several production sites that produce differentiated products with different capacity and service level requirements. The unit inventory holding cost is higher at the second stage. This paper first uses a network of inventory-queue model to evaluate the inventory cost and service level achievable for given inventory control policy, and then derives a very simple algorithm to find the optimal inventory control policy that minimizes the overall inventory holding cost and satisfies the given service level requirements. Some managerial insights are obtained through numerical examples.  相似文献   

2.
This article is concerned with determining the production–shipment policy for an economic production quantity model with quality assurance and an improved delivery schedule. We extend a recent work by Chiu et al. [Y.-S.P. Chiu, C.-A.K. Lin, H.-H. Chang, and V. Chiu, Mathematical modeling for determining economic batch size and optimal number of deliveries for EPQ model with quality assurance, Math. Comput. Model. Dyn. Sys. 16 (4) (2010), pp. 373–388] by incorporating an alternative delivery plan that aims at lowering the inventory holding cost for both supplier and buyer in such an integrated inventory system. Mathematical modelling along with Hessian matrix equations is used, and as a result the optimal production batch size and optimal number of deliveries are derived. A numerical example is provided to demonstrate the practical use of the results and the significant savings in stock holding costs for both vendor and buyer.  相似文献   

3.
考虑生产商、销售商联合库存的动态优化问题,建立的随机需求下生产-销售运作系统的排队模型,得到了系统的稳态概率分布和队长分布.以成本最小化为目标,模型算法找到了最优的运作策略和机器使用数量.数值模拟的结果表明,依赖于指定机器数量的动态调整策略明显优于静态系统.  相似文献   

4.
本文研究n维组件单一产品,有限库存的ATO系统。通过建立马尔可夫决策过程模型(MDP),构造优化算法,研究组件生产与库存的最优控制策略。最优策路可以表示为状态依赖型库存阈值,系统内任一组件的控制策略受其它组件库存状态的影响。利用最优控制理论动态规划方法和数值计算方法对最优控制策略的存在性、最优值的数值计算进行研究,建立更符合实际生产的ATO系统决策模型,进行相应的理论和实验验证,研究系统参数对最优策略的影响。  相似文献   

5.
We consider a make-to-stock system served by an unreliable machine that produces one type of product, which is sold to customers at one of two possible prices depending on the inventory level at the time when a customer arrives (i.e., the decision point). The system manager must determine the production level and selling price at each decision point. We first show that the optimal production and pricing policy is a threshold control, which is characterized by three threshold parameters under both the long-run discounted profit and long-run average profit criteria. We then establish the structural relationships among the three threshold parameters that production is off when inventory is above the threshold, and that the optimal selling price should be low when inventory is above the threshold under the scenario where the machine is down or up. Finally we provide some numerical examples to illustrate the analytical results and gain additional insights.  相似文献   

6.
In this paper we study a system composed of a supplier and buyer(s). We assume that the buyer faces random demand with a known distribution function. The supplier faces a known production lead time. The main objective of this study is to determine the optimal delivery lead time and the resulting location of the system inventory. In a system with a single-supplier and a single-buyer it is shown that system inventory should not be split between a buyer and supplier. Based on system parameters of shortage and holding costs, production lead times, and standard deviations of demand distributions, conditions indicating when the supplier or buyer(s) should keep the system inventory are derived. The impact of changes to these parameters on the location of system inventory is examined. For the case with multiple buyers, it is found that the supplier holds inventory for the buyers with the smallest standard deviations, while the buyers with the largest standard deviations hold their own inventory.  相似文献   

7.
Environmental legislation and customer expectations increasingly force manufacturers to take back their products after use. Returned products may enter the production process again as input resources. Material management has to be modified accordingly.One of the areas concerned is inventory management. The present paper provides a step towards a systematic analysis of inventory control in the context of reuse. A basic inventory model is presented comprising Poisson demand and returns. For this model, an optimal control policy is derived and optimal control parameters are computed. Moreover, a numerical analysis is provided of the impact of the return-flow on the inventory system. Comparison with traditional (s,Q)-inventory models is central throughout the analysis.  相似文献   

8.
Inventory systems for joint remanufacturing and manufacturing have recently received considerable attention. In such systems, used products are collected from customers and are kept at the recoverable inventory warehouse for future remanufacturing. In this paper a production–remanufacturing inventory system is considered, where the demand can be satisfied by production and remanufacturing. The cost structure consists of the EOQ-type setup costs, holding costs and shortage costs. The model with no shortage case in serviceable inventory is first studied. The serviceable inventory shortage case is discussed next. Both models are considered for the case of variable setup numbers of equal sized batches for production and remanufacturing processes. For these two models sufficient conditions for the optimal type of policy, referring to the parameters of the models, are proposed.  相似文献   

9.
Inventory policies for joint remanufacturing and manufacturing have recently received much attention. Most efforts, though, were related to (optimal) policy structures and numerical optimization, rather than closed form expressions for calculating near optimal policy parameters. The focus of this paper is on the latter. We analyze an inventory system with unit product returns and demands where remanufacturing is the cheaper alternative for manufacturing. Manufacturing is also needed, however, since there are less returns than demands. The cost structure consists of setup costs, holding costs, and backorder costs. Manufacturing and remanufacturing orders have non-zero lead times. To control the system we use certain extensions of the familiar (s, Q) policy, called push and pull remanufacturing policies. For all policies we present simple, closed form formulae for approximating the optimal policy parameters under a cost minimization objective. In an extensive numerical study we show that the proposed formulae lead to near-optimal policy parameters.  相似文献   

10.
In this paper, we consider a periodic-review stochastic inventory model with an asymmetric or piecewise-quadratic holding cost function and nonnegative production levels. It is assumed that the cost of deviating from an ideal production level or existing capacity is symmetric quadratic. It is shown that the optimal order policy is similar to the (s, S) policies found in the literature, except that the order-up-to quantity is a nonlinear function of the entering inventory level. Dynamic programming is used to derive the optimal policy. We provide numerical examples and a sensitivity analysis on the problem parameters.This research was supported by the Natural Sciences and Engineering Research Council of Canada under Grant No. A5872. The authors wish to thank an anonymous referee for very helpful comments on an earlier version of this paper.  相似文献   

11.
In this work the problem of obtaining an optimal maintenance policy for a single-machine, single-product workstation that deteriorates over time is addressed, using Markov Decision Process (MDP) models. Two models are proposed. The decision criteria for the first model is based on the cost of performing maintenance, the cost of repairing a failed machine and the cost of holding inventory while the machine is not available for production. For the second model the cost of holding inventory is replaced by the cost of not satisfying the demand. The processing time of jobs, inter-arrival times of jobs or units of demand, and the failure times are assumed to be random. The results show that in order to make better maintenance decisions the interaction between the inventory (whether in process or final), and the number of shifts that the machine has been working without restoration, has to be taken into account. If this interaction is considered, the long-run operational costs are reduced significantly. Moreover, structural properties of the optimal policies of the models are obtained after imposing conditions on the parameters of the models and on the distribution of the lifetime of a recently restored machine.  相似文献   

12.
13.
We consider the dynamic scheduling of a two-part-type make-to-stock production system using the model of Wein [12]. Exogenous demand for each part type is met from finished goods inventory; unmet demand is backordered. The control policy determines which part type, if any, to produce at each moment; complete flexibility is assumed. The objective is to minimize average holding and backorder costs. For exponentially distributed interarrival and production times, necessary and sufficient conditions are found for a zero-inventory policy to be optimal. This result indicates the economic and production conditions under which a simple make-to-order control is optimal. Weaker results are given for the case of general production times.  相似文献   

14.
This paper presents an integrated inventory distribution optimization model that simultaneously incorporates the issues of location, production, inventory, and transportation within a supply chain. The objective is to determine the optimal number and size of shipments under varying but commonly practiced production and shipping scenarios. A continuous approximation procedure is proposed to determine the optimal number and size of shipments. Three production and shipping scenarios are investigated and closed form expressions for the optimal number of shipments for each scenario are obtained. A numerical example is presented to demonstrate the usefulness of the model.  相似文献   

15.
This paper studies a deterministic inventory model with a stock-dependent demand pattern where the cumulative holding cost is a non-linear function of both time and stock level. When the monetary resources are limited and the inventory manager can invest his/her money in buying different products, it seems reasonable to select the ones that provide a higher profitability. Thus, a new approach with the aim of maximizing the profitability ratio (defined as the profit/cost quotient) is considered in this paper. We prove that the profitability ratio maximization is equivalent to minimizing the inventory cost per unit of an item. The optimal policy is obtained in a closed form, whose general expression is a generalization of the classical EOQ formula for inventory models with a stock-dependent demand rate and a non-linear holding cost. This optimal solution is different from the other policies proposed for the problems of minimum cost or maximum profit per unit time. A complete sensitivity analysis of the optimal solution with respect to all the parameters of the model is developed. Finally, numerical examples are solved to illustrate the theoretical results and the solution methodology.  相似文献   

16.
In planning and managing production systems, manufacturers have two main strategies for responding to uncertainty: they build inventory to hedge against periods in which the production capacity is not sufficient to satisfy demand, or they temporarily increase the production capacity by “purchasing” extra capacity. We consider the problem of minimizing the long-run average cost of holding inventory and/or purchasing extra capacity for a single facility producing a single part-type and assume that the driving uncertainty is demand fluctuation. We show that the optimal production policy is of a hedging point policy type where two hedging levels are associated with each discrete state of the system: a positive hedging level (inventory target) and a negative one (backlog level below which extra capacity should be purchased). We establish some ordering of the hedging levels, derive equations satisfied by the steady-state probability distribution of the inventory/backlog, and give a more detailed analysis of the optimal control policy in a two state (high and low demand rate) model.  相似文献   

17.
We consider an inventory-production system where items deteriorate at a constant rate. The objective is to develop an optimal production policy that minimizes the cost associated with inventory and production rate. The inventory problem is first modeled as a linear optimal control problem. Then linear quadratic regulator (LQR) technique is applied to the control problem in order to determine the optimal production policy. Examples are solved for three different demand functions. Sensitivity analysis is then conducted to study the effect of changing the cost parameters on the objective function.  相似文献   

18.
One of the most fundamental results in inventory theoryis the optimality of (s, S) policy for inventory systems withsetup cost. This result is established based on a key assumptionof infinite production/ordering capacity. Several studies haveshown that, when there is a finite production/ordering capacity,the optimal policy for the inventory system is very complicatedand indeed, only partial characterization for the optimal policyis possible. In this paper, we consider a continuous reviewinventory system with finite production/ordering capacity andsetup cost, and show that the optimal control policy for thissystem has a very simple structure. We also develop efficientalgorithms to compute the optimal control parameters.  相似文献   

19.
This paper shows that under date-terms supplier credit, making explicit the separate effects of carrying cost, the financing and other marginal holding costs, does not invalidate Kingsman's original result that the optimal order quantity is given by an integer multiple of monthly demands, provided the capital investment component of the inventory holding costs is equal to or greater than 30% of the component due to the physical holding of inventory. The analysis is extended to the case when orders of less than a month's demand are optimal. Here it is shown that the order quantity should be an integer fraction of a month's demand, provided that the capital investment component of the inventory holding charge is equal to or greater than one quarter of the component due to the physical holding of inventory. It is argued that these conditions are likely to be satisfied for most if not all practical inventory situations. Combining these results with those of Carlson and Rousseau leads to a simple formula for the general optimal policy. The EOQ can still be expressed as a simple formula, so for practical situations generally there is no need to use the numerical search procedure these authors propose.  相似文献   

20.
In this paper, an optimal production inventory model with fuzzy time period and fuzzy inventory costs for defective items is formulated and solved under fuzzy space constraint. Here, the rate of production is assumed to be a function of time and considered as a control variable. Also the demand is linearly stock dependent. The defective rate is taken as random, the inventory holding cost and production cost are imprecise. The fuzzy parameters are converted to crisp ones using credibility measure theory. The different items have the different imprecise time periods and the minimization of cost for each item leads to a multi-objective optimization problem. The model is under the single management house and desired inventory level and product cost for each item are prescribed. The multi-objective problem is reduced to a single objective problem using Global Criteria Method (GCM) and solved with the help of Fuzzy Riemann Integral (FRI) method, Kuhn–Tucker condition and Generalised Reduced Gradient (GRG) technique. In optimum results including production functions and corresponding optimum costs for the different models are obtained and then are presented in tabular forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号