首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
This present analysis discusses the mixed convection boundary layer flow of a magnetohydrodynamic second grade fluid over an unsteady permeable stretching sheet. The time‐dependent stretching velocity and the surface temperature are chosen. Series solutions of the governing boundary value problems are obtained by employing homotopy analysis method. Convergence of the obtained solution is explicitly discussed. The dependence of velocity and temperature profiles on the various quantities is shown and discussed by plotting graphs. Skin friction coefficient and the local Nusselt number tabulated and analyzed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Astrophysical turbulence is magnetohydrodynamic (MHD) in nature. We discuss fundamental properties of MHD turbulence and in particular the generation of compressible MHD waves by Alfvénic turbulence and show that this process is inefficient. This allows us to study the evolution of different types of MHD perturbations separately. We describe how to separate MHD fluctuations into three distinct families: Alfvén, slow, and fast modes. We find that the degree of suppression of slow and fast modes production by Alfvénic turbulence depends on the strength of the mean field. We review the scaling relations of the modes in strong MHD turbulence. We show that Alfvén modes in compressible regime exhibit scalings and anisotropy similar to those in incompressible regime. Slow modes passively mimic Alfvén modes. However, fast modes exhibit isotropy and a scaling similar to that of acoustic turbulence both in high and low plasmas. We show that our findings entail important consequences for star formation theories, cosmic ray propagation, dust dynamics, and gamma ray bursts. We anticipate many more applications of the new insight to MHD turbulence and expect more revisions of the existing paradigms of astrophysical processes as the field matures. PACS 47.65.+a; 52.30.Cv; 52.35.Ra; 95.30.Qd  相似文献   

3.
    
In this study, the magnetohydrodynamics (MHD) natural convection heat transfer with Joule and viscous heating effects inside an iso-flux porous medium-filled inclined rectangular enclosure is studied numerically. An iso-heat flux is applied for heating and cooling the two opposing walls of the enclosure while the other walls are adiabatic. The Forchheimer extension of Darcy-Oberbeck-Boussinesq and energy equations is transformed into a dimensionless form using a set of suitable variables instead of a finite difference scheme. The governing parameters are the magnetic influence number, the modified Rayleigh number, the inclination angle, and the aspect ratio of the enclosure. The results show that viscous and Joule heating effects decrease heat transfer rates.  相似文献   

4.
    
This paper studied on magnetohydrodynamics flow and heat transfer outside a stretching cylinder. Momentum and energy equations are reduced using similarity transformation and converted into a system of ordinary differential equations which are solved analytically by the homotopy analysis method. The effects of the parameters involved, namely the magnetic parameter (M), Prandtl number (Pr) and Reynolds number (Re) on the velocity and temperature fields are investigated. The obtained results are valid for the whole solutions' domain with high accuracy. These methods can be easily extended to other linear and nonlinear equations and so can be found widely applicable in engineering and sciences. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
    
Numerical solutions of 2D magneto‐hydrodynamic (MHD) equations by means of a fluctuation splitting (FS) scheme (with a new wave model and dual time stepping technique) is presented. The FS scheme, essentially based on the model explained in Proceedings of the Tenth International Conference, vol. 10, Swansea, 21–25 July 1997; Godunov Symposium, University of Michigan, Ann Arbor, 1–2 May 1997; Physics Symposium, Alanya, Turkey, 27–31 October 1998; J. Comput. Phys. 1999; 153 :437–466; Ph.D. Thesis, University of Marmara, Istanbul, Turkey, 2000), was extended to include gravitational source effects, limiters to limit oscillations, high order time accuracy through multistage Runge–Kutta steps, and a dual time stepping scheme to drive magnetic field divergence to zero during iterations. The numerical results show that with the new wave model called MHD‐B along with its embedded numerical dissipation, correct limiting viscosity solution has been recovered and that it can safely be used in order to investigate steady or time dependent magnetized or neutral compressible flows in two dimensions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
A method of finding the homogeneous deformations of a two-fluid plasma with allowance for the electron inertia is proposed. By homogeneous deformation is meant an axisymmetric plasma flow with a linear dependence of the radial velocity on the radius. Three families of homogeneous deformations are found using this method. One of these families, consisting of deformations with an arbitrary law of variation of the total current, is of particular interest with reference to plasma column dynamics. The method proposed is based on the reduction of the equations of two-fluid plasma dynamics to single-fluid equations of the hydrodynamic type (the equations of electromagnetic hydrodynamics (EMHD)) with a non-diagonal internal stress tensor, three-parameter thermodynamics, and a nonlocal form of the generalized Ohm’s law. Possible applications of the exact solutions found to the analysis of the data obtained using certain experimental apparatus are discussed.  相似文献   

7.
    
The magnetohydrodynamics flow and heat transfer in a thin liquid film over an unsteady elastic stretching surface are analyzed by the homotopy analysis method. A more general surface temperature is taken into consideration. The effects of various parameters in this study are discussed and presented graphically. The good agreement between the analytic series solutions and the previous numerical results shows the effectiveness of HAM to this problem. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
         下载免费PDF全文
The problem of the steady magnetohydrodynamic (MHD) stagnation-point flow of an incompressible viscous fluid over a stretching sheet is studied. The effect of an induced magnetic field is taken into account. The nonlinear partial differential equations are transformed into ordinary differential equations via the similarity transformation. The transformed boundary layer equations are solved numerically using the shooting method. Numerical results are obtained for various magnetic parameters and Prandtl numbers. The effects of the induced magnetic field on the skin friction coefficient, the local Nusselt number, the velocity, and the temperature profiles are presented graphically and discussed in detail.  相似文献   

9.
This paper documents the numerical investigation of the effects of non-uniform magnetic fields, i.e. magnetic-ribs, on a liquid–metal flowing through a two-dimensional channel. The magnetic ribs are physically represented by electric currents flowing underneath the channel walls. The Lorentz forces generated by the magnetic ribs alter the flow field and, as consequence, the convective heat transfer and wall shear stress. The dimensionless numbers characterizing a liquid–metal flow through a magnetic field are the Reynolds (Re) and the Stuart (N) numbers. The latter provides the ratio of the Lorentz forces and the inertial forces. A liquid–metal flow in a laminar regime has been simulated in the absence of a magnetic field (ReH = 1000, N = 0), and in two different magnetic ribs configurations for increasing values of the Stuart number (ReH = 1000, N equal to 0.5, 2 and 5). The analysis of the resulting velocity, temperature and force fields has revealed the heat transport phenomena governing these magneto-hydro-dynamic flows. Moreover, it has been noticed that, by increasing the strength of the magnetic field, the convective heat transfer increases with local Nusselt numbers that are as much 27.0% larger if compared to those evaluated in the absence of the magnetic field. Such a convective heat transfer enhancement has been obtained at expenses of the pressure drop, which increases more than twice with respect to the non-magnetic case.  相似文献   

10.
         下载免费PDF全文
By the theory of generalized functions this paper introduces a specific generalized functionp by which, together with its various derivatives, the boundary integral equations and its arbitrary derivatives of any sufficiently smooth function can be established. These equations have no non-integral singularities. For a problem defined by linear partial differential operators, the partial differential equations of the problem can always be converted into boundary integral equations so long as the relevant fundamental solutions exist.This paper is partial fulfilment of the first author's doctorial dissertation and the second author is the endviser.  相似文献   

11.
ABSTRACT

In this paper, the OpenACC heterogeneous parallel programming model is successfully applied to modification and acceleration of the three-dimensional Tokamak magnetohydrodynamical code (CLT). Through combination of OpenACC and MPI technologies, CLT is further parallelised by using multiple-GPUs. Significant speedup ratios are achieved on NVIDIA TITAN Xp and TITAN V GPUs, respectively, with very few modifications of CLT. Furthermore, the validity of the double precision calculations on the above-mentioned two graphics cards has also been strictly verified with m/n?=?2/1 resistive tearing mode instability in Tokamak.  相似文献   

12.
    
The temporal stability on inviscid compressible swirling flow between two concentric cylinders is investigated. First, a linearized differential equation is derived. Two stability criteria are derived for compressible swirling flow by an analytic method analogous to Ludwieg ’s method. A finite-difference numerical method is then used to solve the eigenvalue problem of this differential equation, to get temporal growth rate and to check these stabilitv criteria derived. Finally.The effect of compressibility for stability is disscused.  相似文献   

13.
  总被引:1,自引:0,他引:1  
This study explores the effects of heat transfer on the Williamson fluid over a porous exponentially stretching surface. The boundary layer equations of the Williamson fluid model for two dimensional flow with heat transfer are presented. Two cases of heat transfer are considered, i.e., the prescribed exponential order surface temperature (PEST) case and the prescribed exponential order heat flux (PEHF) case. The highly nonlinear partial differential equations are simplified with suitable similar and non-similar variables, and finally are solved analytically with the help of the optimal homotopy analysis method (OHAM). The optimal convergence control parameters are obtained, and the physical fea- tures of the flow parameters are analyzed through graphs and tables. The skin friction and wall temperature gradient are calculated.  相似文献   

14.
    
Melting heat transfer in the boundary layer flow of a couple stress fluid over a stretching surface is investigated. The developed differential equations are solved for homotopic solutions. It is observed that the velocity and the boundary layer thickness are decreasing functions of the couple stress fluid parameter. However, the temperature and surface heat transfer increase when the values of the couple stress fluid parameter increase. The velocity and temperature fields increase with an increase in the melting process of the stretching sheet.  相似文献   

15.
         下载免费PDF全文
This investigation examines the time dependent magnetohydrodynamic (MHD) flow problem of a micropolar fluid between two radially stretching sheets. Both strong and weak concentrations of microelements are taken into account. Suitable transformations are employed for the conversion of partial differential equations into ordinary differential equations. Solutions to the resulting problems are developed with a homotopy analysis method (HAM). The angular velocity, skin friction coefficient, and wall couple stress coefficient are illustrated for various parameters.  相似文献   

16.
磁流体动力学在航空工程中的应用与展望   总被引:2,自引:0,他引:2  
介绍了磁流体动力学在航空工程中的主要应用方式,主要包括:磁流体冲压组合发动机、磁流体涡轮组合发动机、燃烧室后磁流体发电、表面磁流体发电、磁流体加速风洞、磁流体推力矢量、进气道大尺寸磁流体流动控制、边界层分离流动控制、边界层转捩控制、飞行器头部热流控制等;探讨了磁流体技术在应用中存在的关键科学与技术问题,对导电流体的产生、磁流体实验设备与实验技术、多场耦合机理及数值模拟方法等进行了分析;最后对磁流体技术在航空工程上的应用与发展进行了总结与展望.  相似文献   

17.
    
介绍了磁流体动力学在航空工程中的主要应用方式,主要包括:磁流体冲压组合发动机、磁流体涡轮组合发动机、燃烧室后磁流体发电、表面磁流体发电、磁流体加速风洞、磁流体推力矢量、进气道大尺寸磁流体流动控制、边界层分离流动控制、边界层转捩控制、飞行器头部热流控制等;探讨了磁流体技术在应用中存在的关键科学与技术问题,对导电流体的产生、磁流体实验设备与实验技术、多场耦合机理及数值模拟方法等进行了分析;最后对磁流体技术在航空工程上的应用与发展进行了总结与展望.  相似文献   

18.
    
This study explores the effects of electro-magneto-hydrodynamics, Hall currents, and convective and slip boundary conditions on the peristaltic propulsion of nanofluids(considered as couple stress nanofluids) through porous symmetric microchannels. The phenomena of energy and mass transfer are considered under thermal radiation and heat source/sink. The governing equations are modeled and non-dimensionalized under appropriate dimensionless quantities. The resulting system is solved numerically w...  相似文献   

19.
  总被引:1,自引:0,他引:1       下载免费PDF全文
In this paper the condition and the conclusion of Toupin-Berdichevskii Theorem is examined, whereby it is explained and demonstrated with an example that the theorem can't be considered as a mathematical expression of Saint-Venant's Principle in Elasticity.  相似文献   

20.
         下载免费PDF全文
The problem of two dimensional stagnation point flow of an electrically conducting micropolar fluid impinging normally on a heated surface in the presence of a uniform transverse magnetic field is analyzed. The governing continuity, momentum, angular momentum, and heat equations together with the associated boundary conditions are reduced to dimensionless form using suitable similarity transformations. The reduced self similar non-linear equations are then solved numerically by an algorithm based on the finite difference discretization. The results are further refined by Richardson’s extrapolation. The effects of the magnetic parameter, the micropolar parameters, and the Prandtl number on the flow and temperature fields are predicted in tabular and graphical forms to show the important features of the solution. The study shows that the velocity and thermal boundary layers become thinner as the magnetic parameter is increased. The micropolar fluids display more reduction in shear stress as well as heat transfer rate than that exhibited by Newtonian fluids, which is beneficial in the flow and thermal control of polymeric processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号