首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple mathematic model for the free radical polymerization of chain transfer monomers containing both polymerizable vinyl groups and telogen groups was proposed. The molecular architecture of the obtained polymer can be prognosticated according to the developed model, which was validated experimentally by homopolymerization of 4‐vinyl benzyl thiol (VBT) and its copolymerization with styrene. The chain transfer constant (CT) of telogen group in a chain transfer monomer is considered to play an important role to determine the architecture of obtained polymer according to the proposed model, either in homopolymerization or copolymerization. A highly branched polymer will be formed when the CT value is around unity, while a linear polymer with a certain extent of side chains will be obtained when the CT value is much bigger or smaller than unity. The CT of VBT was determined to be around 15 by using the developed model and 1H NMR monitored experiments. The obtained poly(VBT) and its copolymers were substantiated to be mainly consisted of linear main chain with side branching chains, which is in agreement with the anticipation from the developed model. The glass transition temperature, number average molecular weight, and its distribution of those obtained polymer were primarily investigated. This model is hopefully to be used as a strategy to select appropriate chain transfer monomers for preparing hyperbranched polymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1449–1459, 2008  相似文献   

2.
In an earlier work it was shown that a random long-chain branching structure can be incorporated in polystyrene by copolymerizing styrene with a small amount of monomer that contains a chain transfer group. The use of vinylbenzylthiol as the chain transfer monomer produced a polystyrene with low number-average molecular weight and a degree of branching lower than expected. In this study polymerization kinetics were used to compute the theoretical molecular weight and degree of branching. The results show that if the chain-transfer constant of the chain transfer monomer is as high as that for vinylbenzylthiol the expected molecular weight and degree of branching will indeed be as low as those found experimentally. The theory also predicts that if the chain transfer constant is near one a highly branched bushy structure will result.  相似文献   

3.
《印度化学会志》2021,98(7):100087
Reversible addition-fragmentation chain transfer (RAFT) polymerization has been examined for the synthesis of poly (styrene sulfonyl chloride) (PSSC) of high molecular weight and narrow polydispersity index (PDI). PSSC, contains reactive sulfonyl chloride that can allow use of organic solvent for membrane casting, and chemical modification through reactive sulfonyl groups. For PSSC preparation, end-capped styrene i.e. styrene sulfonyl chloride (SSC) is used as a monomer, which is derived from sodium 4-vinylbenzenesulfonate by chlorination with thionyl chloride. Fourier transform infrared spectroscopy, Raman spectroscopy and Proton nuclear magnetic resonance spectroscopy, have been successfully used to confirm the polymer architecture. End-group of PSSC containing RAFT agent (Cyanomethyl N-methyl-N-phenylcarbamodithioate), is also confirmed by fragmentation analysis using Gas chromatography-mass spectroscopy. Evaluation of PSSC by X-ray diffraction and differential scanning calorimetry showed that resulting polymer is predominantly amorphous in nature and has a glass transition temperature of 119 ​°C. Gel permeation chromatography data reveals formation of high molecular weight (84 ​kDa) PSSC with and low PDI (1.4). Moreover, PSSC can be converted to polyelectrolyte and can be crosslinked by interfacial polymerization concept; hence, it would have considerable prospective for membrane preparation for fuel cell and water purification.  相似文献   

4.
Unique, highly branched polyisobutylenes (PIB) were prepared via quasiliving carbocationic copolymerization of isobutylene and styrene (St) monomers. The junction points were formed by Friedel-Crafts self alkylation of PSt segments by the carbocationic chain ends. First, linear PIB was prepared with reactive chain ends. This was reacted with St monomer to form PIB-b-PSt AB, and PSt-b-PIB-b-PSt ABA type triblock copolymers with reactive carbocationic chain ends. The terminal carbonations react with the phenyl group of the polystyrene end-segments of the block copolymers leading to chain coupling, and thus PIB star polymers in the case of AB and hyperbranched PIB from ABA block copolymers. The resulting branched polymers were characterized and the branch formation was confirmed by gel permeation chromatography (GPC) and proton nuclear magnetic resonance spectroscopy (1H NMR).  相似文献   

5.
石艳 《高分子科学》2008,(3):321-329
Heteroarm star-shaped polymers were synthesized by conventional free radical polymerization in two steps by the use of polyfunctional chain transfer agent.In the first step,free radical polymerization of methyl methacrylate was carried out in the presence of a polyfunctional chain transfer agent,pentaerythritol tetrakis(3-mercaptopropinate).At appropriate monomer conversions,two-arm PMMA having two residual thiol groups at the chain center or three-arm PMMA having one residual thiol group at the core wer...  相似文献   

6.
Chain transfer reactions widely exist in the free radical polymerization and controlled radical polymerization, which can significantly influence polymer molecular weight and molecular weight distribution. In this work, the chain transfer reactions in modeling the reversible addition–fragmentation transfer (RAFT) solution copolymerization are included and the effects of chain transfer rate constant, monomer concentration, and comonomer ratio on the polymerization kinetics and polymer molecular weight development are investigated. The model is verified with the experimental RAFT solution copolymerization of styrene and butyl acrylate, with good agreements achieved. This work has demonstrated that the chain transfer reactions to monomer and solvent can have significant impacts on the number‐average molecular weight (Mn) and dispersity (Ð).  相似文献   

7.
Abstract

A new monomer containing two replaceable groups, 2,4-dichloro-6-(p-vinylphenyl)-1,3,5-triazine (DCVT) was prepared by the reaction of p-vinylphenylmagnesium chloride with cyanuric chloride. This monomer was polymerized readily in benzene by AIBN at 60°C. From the copolymerization with styrene, Q and e values of DCVT were obtained as Q = 2.42 and e = 0.08. An insoluble terpolymer prepared from DCVT, styrene, and divinylbenzene was treated with several nucleophilic reagents, including sodium methoxide, sodium methylmercaptide, dimethylamine, and triethylphosphite, to afford the corresponding polymers in high conversions.  相似文献   

8.
Ethyl-2-(2-cyano-2-ethylthio)-ethyl-propenoate (ECEP) was synthesized and examined as free-radical addition–fragmentation chain transfer agent (AFCTA) in the bulk polymerization of methyl methacrylate (MMA) and styrene at various temperatures. A better chain transfer constant (Ctr) was observed for styrene than for MMA, projecting the potentiality of the compound as a better end-functionalizing agent for the former. In both cases, copolymerization of ECEP with the monomer predominated over fragmentation, the relative proportions of which were dependent on the monomer. The ECEP-terminated radical fragmented to an extent of 26% in the presence of MMA, whereas it was only 9.5% in the case of styrene. The relative extent of fragmentation and copolymerization was in conformation to the calculated reactivity ratios and chain transfer constants. Addition–fragmentation chain transfer resulted in the formation of methacrylic-functional macromonomers. The copolymerizability of the resultant macromonomer was found to depend on the nature of the backbone and on the comonomer. On copolymerizing with MMA, the terminal monomer moiety on polystyrene (PS)-based macromonomers preferred to undergo fragmentation, whereas that of the polymethyl methacrylate (PMMA)-based one copolymerized readily with styrene because of thermodynamic and kinetic factors. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2511–2524, 1999  相似文献   

9.
Copolymerization of acrylonitrile with styrene spontaneously occurred on addition of zinc chloride without addition of any other radical initiator. The composition of the copolymer approached that of strictly alternating copolymer as zinc chloride added to the copolymerization system increased. The significance of the apparent monomer reactivity ratios of this copolymerization system was studied from a kinetic point of view, and it was shown that the monomer sequence distribution is indicated by the apparent monomer reactivity ratios. Further, equations which represent the relation between the apparent monomer reactivity ratios and Q,e values at a given salt concentration were derived. These equations reasonably accounted for the decrease of the apparent monomer reactivity ratios of the copolymerization of acrylonitrile with styrene in the presence of zinc chloride and the behavior of the other acrylonitrile copolymerization systems in the presence of zinc chloride. The initiation step of the spontaneous radical copolymerization of acrylonitrile with styrene in the presence of zinc chloride was explained by a cross-initiation mechanism.  相似文献   

10.
By reacting poly(methacryloyl chloride) (PMKC) with allyl amine, a multiallyl monomer in PMKC matrix has been obtained. Free-radical polymerization of multiallyl monomer in diluted solutions at a concentration of 12 g/L multiallyl monomer occurs partly along ordered allyl units in the matrix and results in ladder-type branched polymers. The polymers obtained are soluble in alcohols, DMF, DMSO and have unreacted allyl double bonds. The structures of multiallyl monomer and homopolymer have been found on the basis of elemental analysis, IR and 1H-NMR spectra and an examination of the products of hydrolysis. The effect of the reaction of degradative chain transfer on the structure of the polymer obtained has been discussed.  相似文献   

11.
The copolymerization of N‐phenyl maleimide and p‐chloromethyl styrene via reversible addition–fragmentation chain transfer (RAFT) process with AIBN as initiator and 2‐(ethoxycarbonyl)prop‐2‐yl dithiobenzoate as RAFT agent produced copolymers with alternating structure, controlled molecular weights, and narrow molecular weight distributions. Using poly(N‐phenyl maleimide‐altp‐chloromethyl styrene) as the macroinitiator for atom transfer radical polymerization of styrene in the presence of CuCl/2,2′‐bipyridine, well‐defined comb‐like polymers with one graft chain for every two monomer units of backbone polymer were obtained. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2069–2075, 2006  相似文献   

12.
Chain transfer constants to monomer have been measured by an emulsion copolymerization technique at 44°C. The monomer transfer constant (ratio of transfer to propagation rate constants) is 1.9 × 10?5 for styrene polymerization and 0.4 × 10?5 for the methyl methacrylate reaction. Cross-transfer reactions are important in this system; the sum of the cross-transfer constants is 5.8 × 10?5. Reactivity ratios measured in emulsion were r1 (styrene) = 0.44, r2 = 0.46. Those in bulk polymerizations were r1 = 0.45, r2 = 0.48. These sets of values are not significantly different. Monomer feed compcsition in the polymerizing particles is the same as in the monomer droplets in emulsion copolymerization, despite the higher water solubility of methyl methacrylate. The equilibrium monomer concentration in the particles in interval-2 emulsion polymerization was constant and independent of monomer feed composition for feeds containing 0.25–1.0 mole fraction styrene. Radical concentration is estimated to go through a minimum with increasing methyl methacrylate content in the feed. Rates of copolymerization can be calculated a priori when the concentrations of monomers in the polymer particles are known.  相似文献   

13.
Herein, a novel methodology for preparing sequence‐controlled polymers is illustrated by using a latent monomer, furan protected maleimide (FMI). At 110 °C, FMI is deprotected by retro Diels–Alder (rDA) reaction, and the released MI is immediately involved in the cross‐polymerization with styrene (St) to deliver heterosegments. At 40 °C the rDA reaction does not proceed, therefore homo‐poly(styrene) segments are produced. By implementing programmable temperature changes during polymerization of St and FMI, “living” polymers with tailored a sequence are created. A ternary copolymerization produces complex sequences as designed. Alkynyl‐functionalized FMI, used as a latent monomer, leads to the desirable placement of functional groups along the polymer chain. This latent‐monomer‐based strategy opens a new avenue for fabricating sequence‐controlled polymers.  相似文献   

14.
In this work, Macro-Reversible addition fragmentation termination (RAFT) agents based on poly(ethylene glycol) (PEG) possessing different molecular weights and bearing benzoyl xanthate moieties were synthesized by the reaction of PEG potassium xanthate salts with benzoyl chloride, 4-methyl benzoyl chloride and 4-chloro benzoyl chloride. Controlled free radical polymerization of the styrene were carried out in the presence of these macro-RAFT agents using 2,2′-azobisizsobutyronitrile (AIBN) as an initiator to yield PS-b-PEG-b-PS block copolymers. The linear kinetic plot ln [M]o/[M] vs. polymerization time indicated that was first order with reference to monomer concentration. The block copolymerization possessed controlled/living character. The controlled character of the RAFT polymerization of the styrene was confirmed by the formation of narrow polydispersity of the polymers, linear increases in the molecular weight with polymerization time and molecular weight of the products that agreed well with theoretical values. Polymers having relatively narrow molecular weight distributions and predetermined number average molecular weights were obtained by the RAFT polymerization of the styrene. However, molecular weights of the polymers deviated from the theoretical values when low molecular weight RAFT agents are used. The results indicate that PEG benzoyl xanthate RAFT agents can more efficiently control the polymerization comparing methyl or chlorobenzoyl derivatives. The block copolymers were characterized by spectroscopic and GPC methods.  相似文献   

15.
The radical copolymerization of styrene or methyl methacrylate and diphenylvinylsilane 1 led to Si–H functionalized polyolefins 5–7 and 8–10 , respectively. The efficiency of incorporation of 1 was low. In addition, the molecular weights were inversely proportional to the concentration of 1 , indicating that, while the silane behaves as a monomer (Si–CH=CH2), its primary role was as a chain termination and a chain transfer (Si–H) agent. The copolymers contained about 1 mol% Si–H groups: the methacrylate derivatives also contained Si-vinyl groups. The residual Si–H groups in the copolymers remained chemically active. It was thus possible to graft vinylsilicones onto 9 using transition metal catalyzed hydrosilation to give 11 , or vinylanthracene onto 9 using radically induced hydrosilation to give 12. © 1998 John Wiley & Sons, Inc. Heteroatom Chem 9:241–251, 1998  相似文献   

16.
Sequential anionic copolymerization of styrene and glycidyl methacrylate (GMA) was performed with the protection of argon under normal pressure, where styrene, GMA, toluene, THF, n-butyllithium and a small amount of lithium chloride (LiCl) were used as first monomer, second monomer, solvent, polar reagent, initiator and additive, respectively. Polystyrene-b-poly(glycidyl methacrylate) diblock copolymers (PS-b-PGMA) with well-defined structure and narrow molecular weight distribution were prepared by the copolymerization reaction of poly(styryl)lithium with GMA under certain temperatures. The copolymers were characterized using gel permeation chromatography (GPC), 1H-NMR, 13C-NMR, thin layer chromatography (TLC) and hydrochloric acid-dioxane argentimetric methods. The effects of additives, copolymerization temperature and THF dosage on the copolymerization were studied. No chain transfer reaction of anionic polymerization of styrene in toluene was observed. Slightly broader molecular weight distribution of PS-b-PGMA was observed with the increase the GMA repeat units. Using THF/toluene blend solvent could reduce the polydispersity index (M w /M n ) and dissolve the copolymer better than toluene alone. Lower temperature (< -40°C) and LiCl are required to prepare PS-b-PGMA with narrower molecular weight distribution.  相似文献   

17.
Hyperbranched vinyl polymers with high degrees of branching (DBs) up to 0.43 functionalized with numerous pendent allene groups have been successfully prepared via reversible addition fragmentation chain transfer polymerization of a state‐of‐art allene‐derived asymmetrical divinyl monomer, allenemethyl methacrylate (AMMA). The gelation did not occur until high monomer conversions (above 90%), as a result of the optimized reactivity difference between the two vinyl groups in AMMA. The branched structure was confirmed by a combination of a triple‐detection size exclusion chromatography (light scattering, refractive index, and viscosity detectors) and detailed 1H NMR analyses. A two‐step mechanism is proposed for the evolution of branching according to the dependence of molecular weight and DB on monomer conversion. Controlled radical polymerization proceeds until moderate conversions, mainly producing linear polymers. Subsequent initiation and propagation on the polymerizable allene side chains as well as the coupling of macromolecular chains generate numerous branches at moderate‐to‐high monomer conversions, dramatically increasing the molecular weight of the polymer. AMMA was also explored as a new branching agent to construct poly(methyl methacrylate)‐type hyperbranched polymers by its copolymerization with methyl methacrylate. The DB can be effectively tuned by the amount of AMMA, showing a linear increase trend. The pendent allene groups in the side chains of the copolymers were further functionalized by epoxidation and thiol‐ene chemistry in satisfactory yields. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2959–2969  相似文献   

18.
Novel hyperbranched polymers were synthesized in a high yield without gelation through the free‐radical alternating copolymerization of an AB/B′ (allyloxy maleic acid/maleic anhydride) system, in which group B and monomer B′ both could only alternately polymerize with group A. The arm number of the produced highly branched polymers was equal to the product of the linear chain length and the probability of pendent B groups being growing centers. The molecular weight of these novel hyperbranched polymers increased with increasing initiator concentration and prolonged polymerization times. The AB/B′ system, used as described, provides a new general methodology for highly branched and functional polymers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3074–3085, 2000  相似文献   

19.
New families of highly branched polyethylenes containing alkyl short chain branches as well as polar and non‐polar long‐chain branches were prepared by combining migratory insertion copolymerization with controlled radical graft copolymerization. Key intermediate was a novel alkoxyamine‐functionalized 1‐alkene which was copolymerized with ethylene using a palladium catalyst. The resulting highly branched polyethylene with alkoxyamine‐functionalized short chain branches was used as macroinitiator to initiate controlled radical graft copolymerization of styrene and styrene/acrylonitrile. Novel polyethylene graft copolymers with molecular masses of Mw >100 000 g/mol and narrow polydispersities were obtained. Transmission electron microscopic studies (TEM) and the presence of two glass transition temperatures at –67 and +100°C indicated microphase separation.  相似文献   

20.
Branched polystyrenes have been synthesized using atom transfer radical polymerization (ATRP) of styrene in the presence of divinyllbenzene (DVB) as branching comonomer. The synthesis was completed via facile one pot approach. Mole ratio of styrene to DVB in range of 5:1-30:1 was employed to obtain soluble polymers. The kinetics of the polymerization and evolution of polymer compositions were revealed by determining the conversions of reactants by gas chromatography (GC). The growth of molecular weight was monitored by GPC and the results indicate that the branched polymers were formed by self-condensing vinyl polymerization (SCVP) of AB monomer or macromonomers. The branched structure of the resulting polymers was confirmed by the remarkable discrepancies of the weight average molecular weights determined by GPC and multi angle laser light scattering (MALLS). The specific viscosity of the resulting polymer is also much lower compared with that of linear analogues. The influence of dosage of initiator and catalyst on the yield and molecular weights of the resulting polymers was also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号