首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In this work, two kinds of ZnO/Cu2S core/shell nanorods (NRs) have been successfully synthesized from ZnO NRs for photoelectrochemical (PEC) water splitting by a versatile hydrothermal chemical conversion method (H-ZnO/Cu2S core/shell NRs) and successive ionic layer adsorption and reaction method (S-ZnO/Cu2S core/shell NRs), respectively. The photoelectrode is composed of a core/shell structure where the core portion is ZnO NRs and the shell portion is Cu2S nanoparticles sequentially located on the surface. The ZnO NRs array provides a fast electron transport pathway due to its high electron mobility properties. The optical property of both two kinds of core/shell NRs was characterized, and enhanced absorption spectrum was discovered. Our PEC system produced very high photocurrent density and photoconversion efficiency under 1.5 AM irradiation for hydrogen generation. On the basis of a versatile chemical conversion process based on the ion-by-ion growth mechanism, H-ZnO/Cu2S core/shell NRs exhibit a much higher photocatalytic activity than S-ZnO/Cu2S core/shell NRs. The photocurrent density and photoconversion efficiency of H-ZnO/Cu2S core/shell NRs are up to 20.12 mA cm?2 at 0.85 V versus SCE and 12.81 % at 0.40 V versus SCE, respectively.  相似文献   

3.
Hydrothermal synthesis of one-dimensional ZnO/CdS core/shell nanocomposites   总被引:1,自引:0,他引:1  
One-dimensional ZnO/CdS core/shell nanocomposite was successfully synthesized by a hydrothermal method utilizing ZnO nanorods, sulfur powder and cadmium salts as precursors. The influence of experimental parameters, such as cadmium precursors, concentration, and reaction temperature on the formation of such core/shell structures was examined. The photoluminescence characterization data of ZnO/CdS suggested that the photogenerated electron transferred from the conduction band of CdS to the conduction band of ZnO and leaded to the blue shift of band-to-band transition (Burstein-Moss effect). The article is published in the original.  相似文献   

4.
A one-pot synthesis of thermally stable core/shell gold nanoparticles (Au-NPs) was developed via surface-initiated atom transfer radical polymerization (ATRP) of n-butyl acrylate (BA) and a dimethacrylate-based cross-linker. The higher reactivity of the cross-linker enabled the formation of a thin cross-linked polymer shell around the surface of the Au-NP before the growth of linear polymer chains from the shell. The cross-linked polymer shell served as a robust protective layer, prevented the dissociation of linear polymer brushes from the surfaces of Au-NPs, and provided the Au-NPs excellent thermal stability at elevated temperature (e.g., 110 degrees C for 24 h). This synthetic method could be easily expanded for preparation of other types of inorganic/polymer nanocomposites with significantly improved stability.  相似文献   

5.
Oxygen dissociation reaction on gold, palladium, and gold‐palladium core/shell nanoparticles was investigated with plane wave basis set, density functional theory. Bader population analysis of charge and electron distribution was employed to understand the change of catalytic activity as a function of the nanopaticle composition. The nanoparticles’ electronic properties were investigated and the degree of core/shell charge polarization was estimated for each composition. It was found that surface polarization plays an important role in the catalysis of the initial step of electrophile reactions such as oxygen dissociation. We have investigated the O2 adsorption energy on each nanoparticle and the activation barrier for the oxygen dissociation reaction as a function of the nanoparticle structure. Furthermore, we have investigated the influence of surface geometry, that is., surface bond lengths on the catalytic activity. We have compared the electronic and the geometry effects on the oxygen activation and dissociation. Our design rules for core/shell nanoparticles offer an effective method for control of the surface catalytic activity. Palladium and gold are often used as catalysts in synthetic chemistry. First‐principles calculations elucidate the mechanisms that control the surface reactivity of gold, palladium, and gold‐palladium core shell nanoparticles in oxygen dissociation reactions. Oxygen dissociation is promoted on the gold surface of gold/palladium core‐shell nanoparticles by favorable electron transfer from the core to the shell. Such core‐shell electronic effects can be used for fine‐tuning the nanoparticles catalytic activity.  相似文献   

6.
The core–shell nanoparticles possessing poly(methyl methacrylate) (PMMA) core coated with chitosan (CS), polyethyleneimine (PEI), and chitosan-mixed-polyethyleneimine (CS/PEI) shells were synthesized in this work. The emulsifier-free emulsion polymerization triggered by a redox initiating system from t-butylhydroperoxide (TBHP) and amine groups on CS and/or PEI was used as a synthetic method. In the CS/PEI systems, the amount of CS was kept constant (0.5 g), while the amount of PEI was varied from 0.1 to 0.5 g. The surface and physico-chemical properties of prepared nanoparticles were then examined. FTIR spectra indicated the presence of grafted PMMA on CS and/or PEI, and the weight fraction of incorporated PEI in the CS/PEI nanoparticles. All nanoparticles were spherical in shape with uniform size distribution illustrated by scanning electron microscopy (SEM). The introduction of PEI to CS nanoparticles yielded the higher monomer conversion, grafting efficiency, and grafting percentage compared with the CS nanoparticles. The size of CS/PEI nanoparticles was smaller than the original CS and PEI nanoparticles, and tended to decrease with increasing amount of PEI introduced. The introduction of PEI also brought the higher colloidal stability to the nanoparticles as indicated by zeta-potential measurement and isoelectric point analysis. The nanoparticles exhibited a promising antibacterial activity against Staphylococcus aureus and Escherichia coli. The nanoparticle–bacteria interaction was studied via SEM. The results suggested that they would be useful as effective antibacterial agents.  相似文献   

7.
A new one-pot synthetic method for preparing core/shell YF3@SiO2 nanoparticles with different morphologies, from spherical to elongated structures ("pearl necklace"), is described; absorbance and photoluminescence spectroscopy reveals intrinsic but no extrinsic defects in the YF3.  相似文献   

8.
We synthesize and characterize stimuli-sensitive core/shell particles with functional group (or material) localized in the core. We previously reported two types of hybrid particles prepared by using the template particles which were synthesized by soap-free emulsion copolymerization with N-isopropylacrylamide and glycidyl methacrylate (GMA) as monomers but by different preparation methods. GMA has advantages in immobilizing materials having several functional groups such as thiol ones. In this study, to obtain the suitable template particles for immobilizing any inorganic nanoparticles in the core, we investigated the effect of feed ratio of the two monomers. Obtained template particles were modified by thiol compounds to introduce ionic groups. They were characterized by dynamic light scattering and scanning electron microscopy. After in situ synthesis of magnetic nanoparticles in the templates, the hybrid particles were characterized directly by transmission electron microscopy. Consequently, we could obtain the hybrid core/shell particles which contained a large amount of magnetic nanoparticles (∼33 wt%) in the core.  相似文献   

9.
10.
In the present work is reported the use of the biopolymer chitosan as template for the preparation of magnetite and magnetite/silver core/shell nanoparticles systems, following a two step procedure of magnetite nanoparticles in situ precipitation and subsequent silver ions reduction. The crystalline and morphological characteristics of both magnetite and magnetite/silver core/shell nanoparticles systems were analyzed by high resolution transmission electron microscopy (HRTEM) and nanobeam diffraction patterns (NBD). The results of these studies corroborate the core/shell morphology and the crystalline structure of the magnetite core and the silver shell. Moreover, magnetization temperature dependent, M(T), measurements show an unusual diluted magnetic behavior attributed to the dilution of the magnetic ordering in the magnetite and magnetite/silver core/shell nanoparticles systems.  相似文献   

11.
12.
This paper demonstrates that capillary electrophoresis (CE) can be employed for characterizing the sizes of a series of Au/Ag core/shell nanoparticles (NPs). We effected the CE separation of Au/Ag core/shell NPs using a mixed buffer of sodium dodecyl sulphate (SDS) (40 mM) and 3-(cyclohexylamino)propanesulfonic acid (10 mM) at pH 9.7 and an applied voltage of 20 kV. A linear relationship (R(2)>0.99) existed between the electrophoretic mobilities and the sizes of the Au/Ag core/shell NPs within the diameter range from 25 to 90 nm; the relative standard deviations of these electrophoretic mobilities were <0.9%. From the good correlation between the results obtained by CE and those provided by scanning electron microscopy, we confirmed that this CE method is a valid one for characterizing the sizes of Au/Ag core/shell NP samples. In addition, when the Au/Ag core/shell NPs were separated through CE and detected using an on-line photodiode array detector, this approach allowed the chemical characterization of the NP species. This CE approach should allow the rapid and cost-effective characterization of a number of future nanomaterials.  相似文献   

13.
We report a facile method to synthesize dispersed Fe3O4@C nanoparticles(NPs). Fe3O4 NPs were firstly prepared via the high temperature diol thermal decomposition method. Fe3O4@C NPs were fabricated using glucose as a carbon source by hydrothermal process. The obtained products were characterized by X-ray diffraction(XRD), transmission electron microscopy(TEM), vibrating sample magnetometer(VSM) and Raman spectra. The results indicate that the original shapes and magnetic property of Fe3O4 NPs can be well preserved. The magnetic particles are well dispersed in the carbon matrix. This strategy would provide an efficient approach for existing applications in Li-ion batteries and drug delivery. Meanwhile, it offers the raw materials to assemble future functional nanometer and micrometer superstructures.  相似文献   

14.
We showed recently that low entropy core/shell structured nanoparticles form spontaneously from the physical mixture of a dispersion of Ag nanoparticles and that of another noble metal (Rh, Pd, or Pt) at room temperature. Here we use isothermal titration calorimetry (ITC) and show that the initial step of such a spontaneous process is strongly exothermic. When the alcohol dispersion of poly(N-vinyl-2-pyrrolidone) (PVP)-protected Rh nanoparticles (average diameter 2.3 nm) was titrated into the alcoholic dispersion of PVP-protected Ag nanoparticles, a strong exothermic enthalpy change, DeltaH, was observed: DeltaH = -908 kJ/mol for Ag(S) nanoparticle (average diameter 10.8 nm) and -963 kJ/mol for Ag(L) nanoparticles (average diameter 22.5 nm). The strength of interaction increases in the order of Rh/Ag > Pd/Ag > Pt/Ag. This strong exothermic interaction is considered as a driving force to from low entropy bimetallic nanoparticles by simple mixing of two kinds of monometallic nanoparticles. We show also that exothermic interactions occur between a pair of noble metal nanoparticles themselves by using ITC.  相似文献   

15.
We present a novel method for the preparation of ultrasmall Au/CdSe core/shell particles. Au-Cd bialloy particles of 4.7 nm diameter were prepared as the precursor. The Cd component in the precursor reacted with the Se source at a temperature of 205 degrees C and was heated to 250 degrees C, leading to formation of a Au/CdSe core/shell structure. The sizes of Au/CdSe nanoparticles have a narrow distribution with an average size of 6.0 nm and Au core of 2.2 nm diameter. The X-ray diffraction pattern and the images of the high-resolution electron transmission microscopy show that the Au cores and the CdSe shells of Au/CdSe core/shell nanoparticles are both well crystallized, and the CdSe shells are in a cubic phase. The absorption spectrum of the Au/CdSe nanoparticles combines the absorption behaviors of the Au cores and the CdSe shells.  相似文献   

16.
In this work, we describe an experimental investigation on the colloidal stability of suspensions of three kinds of particles, including magnetite, poly(lactic acid) (PLA), and composite core/shell colloids formed by a magnetite core surrounded by a PLA shell. The experiments were performed with dilute suspensions, so that recording the optical absorbance with time gives a suitable indication of the aggregation and sedimentation of the suspensions. The method allowed us to distinguish very accurately between the different surface and magnetic forces responsible for the structures acquired by particle aggregates. Thus, the pure PLA suspensions are very sensitive to ionic strength and almost unaffected by pH changes. On the contrary, the stability of magnetite systems is mainly controlled by pH. The effect of vertical magnetic fields on the stability of magnetite and magnetite/PLA suspensions is also investigated. The PLA shell reduces the magnetic responsiveness of magnetite, but it is demonstrated that the mixed particles can also form structures induced by the field, despite their lower magnetization, and they can be considered in magnetically targeted biomedical applications.  相似文献   

17.
CdS/PMMA core/shell nanoparticles were synthesized using dispersion-mediated interfacial polymerization, and the transparent PMMA shell not only maintained the optical properties of CdS core but effectively protected the CdS core from environmental perturbation.  相似文献   

18.
Ni/NiO core/shell nanoparticles having high affinity with polyhistidine were synthesized by decomposition of a Ni surfactant complex followed by air oxidation. Ni/NiO nanoparticles showed selective and efficient binding to histidine-tagged proteins and easy separation by using a magnet. These provided a more convenient way to efficient purification of histidine-tagged proteins compared with the conventional Ni-NTA complex-bound resins and microbeads.  相似文献   

19.
Designed growth of zinc oxide (ZnO)/poly(3,4-ethylenedioxythiophene) (PEDOT) core/shell hybrid nanotube arrays has been achieved by electropolymerization technique. The ZnO/PEDOT hybrid nanotubes electropolymerized for 2000-second display enhanced electrochromic properties of the contrast ratio up to 31.3%, a lot higher than those of the pure PEDOT and ZnO/PEDOT hybrid nanorods. Moreover, the coloring efficiency of the hybrid nanotubes increases from 105.2 cm2 C−1 of ZnO/PEDOT hybrid nantotube with the electrodeposition time of 1000 seconds to 122.2 cm2 C−1 of 2000 seconds at 520 nm. Therefore, the hybrid composite nanotubes fabricated by the in situ electrodeposition techniques may demonstrate huge potential applications in energy-saving technologies such as smart windows.  相似文献   

20.
A method to prepare magnetic nanoparticles with a covalently bonded polystyrene shell by surface initiated atom transfer radical polymerization (ATRP) was reported. First, the initiator for ATRP was covalently bonded onto the surface of magnetic nanoparticles through our novel method, which was the combination of ligand exchange reaction and condensation of triethoxysilane having an ATRP initiating site, 2-bromo-2-methyl-N-(3-(triethoxysilyl)propyl) propanamide. Then the surface initiated ATRP of styrene mediated by a copper complex was carried out and exhibited the characteristics of a controlled/“living” polymerization. The as-synthesized nanoparticles were coated with well-defined PS of a target molecular weight up to 45 K. These hybrid nanoparticles had an exceptionally good dispersibility in organic solvents and were subjected to detailed characterization using DLS, GPC, FTIR, XPS, UV-vis, TEM and TGA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号