首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 491 毫秒
1.
We present composition-controlled synthesis of ZnO-Zn composite nanoparticles by laser ablation of a zinc metal target in pure water or in aqueous solution of sodium dodecyl sulfate (SDS). By SDS concentration, composition and size of the nanoparticles can be controlled in a wide range. Relative amounts of the components Zn and ZnO, the particle size, and the microstructure can evolve with SDS concentration in solution. High SDS concentration corresponds to high relative amount of Zn nanoparticles existing as the core in the core/shell nanostructures, whereas low SDS concentration leads to high ZnO amount. This was explained by a dynamic mechanism on the basis of the competition between aqueous oxidation and SDS capping protection. Correspondingly, optical absorption spectra evolve from the excitonic peak of ZnO (about 350 nm) to the Zn surface plasmon resonance (about 242 nm) with rise of SDS concentration. A blue (about 450 nm) photoluminescence was observed in the obtained ZnO nanoparticles, which was attributed to existence of interstitial zinc in ZnO lattices. This study has revealed that laser ablation of active metal in liquid media is an appropriate method to synthesize a series of metal oxide semiconductor-metal composite nanoparticles with controlled composition and size.  相似文献   

2.
水热法合成CdS/ZnO核壳结构纳米微粒   总被引:31,自引:0,他引:31  
以半胱氨酸镉配合物为前驱体,采用水热法合成CdS纳米微粒,并以ZnO对其进行表面修饰,形成具有核/壳结构的CdS/ZnO半导体纳米微粒,CdS纳米微粒表面经ZnO修饰后,其带边发射大大增强,透射电镜显示,110℃下反应4h所得的CdS/ZnO颗粒尺寸约为20nm,电子衍射表明其结构为六方相。  相似文献   

3.
We fabricated PPy/PB core/shell nanoparticles via one-step miniemulsion polymerization using a metallosurfactant of EPE-Fe. The defined hollow structure endows PB nanoshells with an emission band at 612 nm. On incorporating PPy inside PB shells, a blue shift and enhanced fluorescence were observed due to charge transfer from PPy to PB.  相似文献   

4.
Simple methods of preparing silver and gold nanoshells on the surfaces of monodispersed polystyrene microspheres of different sizes as well as of silver nanoshells on free-standing gold nanoparticles are presented. The plasmon resonance absorption spectra of these materials are presented and compared to predictions of extended Mie scattering theory. Both silver and gold nanoshells were grown on polystyrene microspheres with diameters ranging from 188 to 543 nm. The commercially available, initially carboxylate-terminated polystyrene spheres were reacted with 2-aminoethanethiol hydrochloride (AET) to yield thiol-terminated microspheres to which gold nanoparticles were then attached. Reduction of silver nitrate or gold hydroxide onto these gold-decorated microspheres resulted in increasing coverage of silver or gold on the polystyrene core. The nanoshells were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM) and UV–vis spectroscopy. By varying the core size of the polystyrene particles and the amount of metal (silver or gold) reduced onto them, the surface plasmon resonance of the nanoshell could be tuned across the visible and the near-infrared regions of the electromagnetic spectrum. Necklace-like chain aggregate structures of gold core–silver shell nanoparticles were formed by reducing silver nitrate onto free citrate-gold nanoparticles. The plasmon resonance absorption of these nanoparticles could also be systematically tuned across the visible spectrum.  相似文献   

5.
The selection of nanoparticles for achieving efficient contrast for biological and cell imaging applications, as well as for photothermal therapeutic applications, is based on the optical properties of the nanoparticles. We use Mie theory and discrete dipole approximation method to calculate absorption and scattering efficiencies and optical resonance wavelengths for three commonly used classes of nanoparticles: gold nanospheres, silica-gold nanoshells, and gold nanorods. The calculated spectra clearly reflect the well-known dependence of nanoparticle optical properties viz. the resonance wavelength, the extinction cross-section, and the ratio of scattering to absorption, on the nanoparticle dimensions. A systematic quantitative study of the various trends is presented. By increasing the size of gold nanospheres from 20 to 80 nm, the magnitude of extinction as well as the relative contribution of scattering to the extinction rapidly increases. Gold nanospheres in the size range commonly employed ( approximately 40 nm) show an absorption cross-section 5 orders higher than conventional absorbing dyes, while the magnitude of light scattering by 80-nm gold nanospheres is 5 orders higher than the light emission from strongly fluorescing dyes. The variation in the plasmon wavelength maximum of nanospheres, i.e., from approximately 520 to 550 nm, is however too limited to be useful for in vivo applications. Gold nanoshells are found to have optical cross-sections comparable to and even higher than the nanospheres. Additionally, their optical resonances lie favorably in the near-infrared region. The resonance wavelength can be rapidly increased by either increasing the total nanoshell size or increasing the ratio of the core-to-shell radius. The total extinction of nanoshells shows a linear dependence on their total size, however, it is independent of the core/shell radius ratio. The relative scattering contribution to the extinction can be rapidly increased by increasing the nanoshell size or decreasing the ratio of the core/shell radius. Gold nanorods show optical cross-sections comparable to nanospheres and nanoshells, however, at much smaller effective size. Their optical resonance can be linearly tuned across the near-infrared region by changing either the effective size or the aspect ratio of the nanorods. The total extinction as well as the relative scattering contribution increases rapidly with the effective size, however, they are independent of the aspect ratio. To compare the effectiveness of nanoparticles of different sizes for real biomedical applications, size-normalized optical cross-sections or per micron coefficients are calculated. Gold nanorods show per micron absorption and scattering coefficients that are an order of magnitude higher than those for nanoshells and nanospheres. While nanorods with a higher aspect ratio along with a smaller effective radius are the best photoabsorbing nanoparticles, the highest scattering contrast for imaging applications is obtained from nanorods of high aspect ratio with a larger effective radius.  相似文献   

6.
Polystyrene/zinc oxide (ZnO) hybrid microcapsules having polystyrene as inner shell and ZnO nanoparticles as outer shell were synthesized by Pickering emulsion polymerization method. ZnO nanoparticles were used to form the colloidosomes that worked as the polymerization vessels, where both styrene monomer and crosslink agent were polymerized together. Fourier transform infrared spectra and thermogravimetric thermograms showed the existence of ZnO and polystyrene in the shell of hybrid microcapsules. The hollow structure and the different morphology under various conditions were also observed by field emission scanning electron microscopy. In addition, the shell thickness of hybrid microcapsules increased as the monomer concentration increased. The photoluminescence property of PS/ZnO hybrid microcapsules could be maintained without any noticeable variation by comparing with the pure ZnO particles. It could be reasonably deduced that hybrid hollow microspheres with multifarious polymer as inner shell and ZnO nanoparticles as outer shell would be produced for many applications.  相似文献   

7.
A simple chemical route for ZnS-coated ZnO nanowires with preferential (002) orientation is reported. Sodium sulfide and zinc nitrate were employed to supply S and Zn atoms at 60 degrees C to form ZnS-coated ZnO nanowires structures. Electron diffraction measurement shows that the ZnO/ZnS core-shell nanostructure is single crystalline. Interesting features are found in the photoluminescence (PL) spectra of ZnS-coated ZnO nanostructures. After coating, the UV emission of nanorods is dramatically enhanced at the expense of the green emission. The core/shell structure with higher band gap shell material and reduced surface states should be responsible for this PL enhancement.  相似文献   

8.
A new method for the preparation of mesoporous ZnO/CdS@SiO2 core/shell nanostructure (CSN) has been developed. The mesoporous silica shells allow Ag+ to enter into the interior of the nanostructures to contact with ZnO/CdS core, accordingly causes the quenching of its band edge emission (475 nm) along with a simultaneous enhancement of red emission at around 595 nm. So, a novel visual fluorescence detection strategy for Ag+ ion is proposed based on a common core/shell Quantum dots nanostructure. Under optimal conditions, the enhanced fluorescence intensity at 595 nm increased linearly with the concentration of Ag+ ion ranging from 0.03 μM to 0.24 μM with a detection limit (3σ) of 3.3 nM.  相似文献   

9.
Mesoporous core–shell nanostructures with controllable ultra-large open channels in their nanoshells are of great interest. However, soft template-directed cooperative assembly to mesoporous nanoshells with highly accessible pores larger than 30 nm, or even above 50 nm into macroporous range, remains a significant challenge. Herein we report a general approach for precisely tailored coating of hierarchically macro-/mesoporous polymer and carbon shells, possessing highly accessible radial channels with extremely wide pore size distribution from ca. 10 nm to ca. 200 nm, on diverse functional materials. This strategy creates opportunities to tailor the interfacial assembly of irregular mesostructured nanounits on core materials and generate various core–shell nanomaterials with controllable pore architectures. The obtained Fe,N-doped macro-/mesoporous carbon nanoshells show enhanced electrochemical performance for the oxygen reduction reaction in alkaline condition.  相似文献   

10.
The reactivity of zinc and copper oxide nanoparticles was investigated upon their interaction with iron oxides. It was ascertained that, depending on the reaction conditions, nanoparticles of zinc and copper ferrites (ZnFe2O4 and CuFe2O4) or core/shell nanoparticles (Fe3O4/ZnO) are produced. Size, composition, and structure of the resulting nanoparticles were determined by transmission electron microscopy and X-ray diffraction analysis. The average size of zinc and copper ferrite nanoparticles was ascertained to be 9–10 and 2–3 nm, respectively. For core/shell Fe3O4/ZnO nanoparticles, the average size is 20 nm. It was experimentally proved that the photoluminescence radiative characteristics of ZnO nanoparticles are retained in core/shell Fe3O4/ZnO nanoparticles.  相似文献   

11.
采用微乳液法制备出Ni0.5Zn0.5 Fe2O4纳米颗粒以及Ni0.5Zn0.5Fe2O4/PANI核壳结构复合纳米材料,借助FT-IR、XRD、SEM、TEM、VSM等分析手段研究了材料的形貌、结构与磁性能.结果表明:得到的Ni0.5Zn0.5Fe2O4纳米颗粒平均粒径为20hm左右,Ni0.5Zn0.5 Fe2O...  相似文献   

12.
通过以金纳米粒子为表面晶种和壳生长的方法制备了金纳米壳包覆二氧化硅的复合纳米粒子。采用TEM 和UV-Vis对复合粒子进行了表征和研究,结果表明所得到的复合粒子粒径均匀、金纳米壳光滑完整,且壳厚度可通过反应物的用量来控制。当核半径与壳厚度之比在4到13之间变化时,复合粒子的光学共振峰在可见光区到近红外光区范围内可发生大于500 nm波长的移动。  相似文献   

13.
Core-shell type nanoparticles with SnO2 and TiO2 cores and zinc oxide shells were prepared and characterized by surface sensitive techniques. The influence of the structure of the ZnO shell and the morphology ofnanoparticle films on the performance was evaluated. X-ray absorption near-edge structure and extended X-ray absorption fine structure studies show the presence of thin ZnO-like shells around the nanoparticles at low Zn levels. In the case of SnO2 cores, ZnO nanocrystals are formed at high Zn/Sn ratios (ca. 0.5). Scanning electron microscopy studies show that Zn modification of SnO2 nanoparticles changes the film morphology from a compact mesoporous structure to a less dense macroporous structure. In contrast, Zn modification of TiO2 nanoparticles has no apparent influence on film morphology. For SnO2 cores, adding ZnO improves the solar cell efficiency by increasing light scattering and dye uptake and decreasing recombination. In contrast, adding a ZnO shell to the TiO2 core decreases the cell efficiency, largely owing to a loss of photocurrent resulting from slow electron transport associated with the buildup of the ZnO surface layer.  相似文献   

14.
We present a novel method for the preparation of ultrasmall Au/CdSe core/shell particles. Au-Cd bialloy particles of 4.7 nm diameter were prepared as the precursor. The Cd component in the precursor reacted with the Se source at a temperature of 205 degrees C and was heated to 250 degrees C, leading to formation of a Au/CdSe core/shell structure. The sizes of Au/CdSe nanoparticles have a narrow distribution with an average size of 6.0 nm and Au core of 2.2 nm diameter. The X-ray diffraction pattern and the images of the high-resolution electron transmission microscopy show that the Au cores and the CdSe shells of Au/CdSe core/shell nanoparticles are both well crystallized, and the CdSe shells are in a cubic phase. The absorption spectrum of the Au/CdSe nanoparticles combines the absorption behaviors of the Au cores and the CdSe shells.  相似文献   

15.
ZnO quantum dots dispersed in a silica matrix were synthesized from a TEOS:Zn(NO(3))(2) solution by a one-step aerosol-gel method. It was demonstrated that the molar concentration ratio of Zn to Si (Zn/Si) in the aqueous solution was an efficient parameter with which to control the size, the degree of agglomeration, and the microstructure of ZnO quantum dots (QDs) in the SiO(2) matrix. When Zn/Si ≤ 0.5, unaggregated quantum dots as small as 2 nm were distributed preferentially inside SiO(2) spheres. When Zn/Si ≥ 1.0, however, ZnO QDs of ~7 nm were agglomerated and reached the SiO(2) surface. When decreasing the ratio of the Zn/Si, a blue shift in the band gap of ZnO was observed from the UV/Visible absorption spectra, representing the quantum size effect. The photoluminescence emission spectra at room temperature denoted two wide peaks of deep-level defect-related emissions at 2.2-2.8 eV. When decreasing Zn/Si, the first peak at ~2.3 eV was blue-shifted in keeping with the decrease in the size of the QDs. Interestingly, the second visible peak at 2.8 eV disappeared in the surface-exposed ZnO QDs when Zn/Si ≥ 1.0.  相似文献   

16.
ZnO/Zn0.8Mg0.2O coaxial nanorod heterostructures were prepared by employing catalyst-free metal-organic vapor-phase epitaxy, and their structural and photoluminescent (PL) properties were investigated using transmission electron microscopy (TEM) and temperature-dependent PL spectroscopy. TEM images show that ZnO/Zn0.8Mg0.2O layers were epitaxially grown on the entire surfaces of the ZnO nanorods and the ZnO nanorod diameters as a core material were as small as 9 +/- 2 nm. A dominant PL peak was observed at 3.316 eV, from room-temperature PL spectra of ZnO/Zn0.8Mg0.2O coaxial nanorod heterostructures with ZnO core diameters of 9 nm, indicating a PL blue shift of 30 meV, which resulted from a quantum confinement effect along the radial direction in ZnO nanorods. Furthermore, temperature-dependent PL properties of the coaxial nanorod heterostructures were investigated, showing much higher PL intensity for the coaxial nanorod heterostructures than that of bare ZnO nanorods at room temperature. The origin of the enhanced PL intensity and reduced thermal quenching for the coaxial nanorod heterostructures is also discussed.  相似文献   

17.
通过溶胶-凝胶法合成了在水溶液中稳定发光、荧光颜色可调的ZnO@polymer核壳型纳米粒子, 并研究了这种量子点对人类宫颈癌HeLa细胞的毒性以及细胞吞噬后激光共聚焦成像的效果. 这种荧光探针的外壳是一种通过配位键与ZnO内核结合的共聚物, 该共聚物外层是亲水的聚甲基丙烯酰胺, 内层是疏水的聚甲基丙烯酸酯. 细胞毒性实验证明, 该材料有良好的生物兼容性, 适用于生物荧光标记. 共聚焦荧光成像结果显示, 这些纳米粒子可以穿透HeLa细胞膜并在细胞质中稳定发光.  相似文献   

18.
Hollow ZnS and ZnO architectures are fabricated by employing Zn(5)(CO(3))(2)(OH)(6) microspheres as the sacrificial template. Zn(5)(CO(3))(2)(OH)(6) microspheres can be effectively converted into the core/shell structured ZnO/ZnS composites (in the Na(2)S solution) and hollow ZnO architectures (in the KOH solution), by a spontaneous ion replacement reaction at room temperature. Removing the core by the KOH treatment of core/shell structured ZnO/ZnS, hollow ZnS spheres with different shell thicknesses can be effectively achieved. The obtained hollow ZnO architectures exhibit unique geometrical shapes, and their walls are composed of nanocrystals, which are connected to each other to form their hemispherical or circular shape. A possible formation process from Zn(5)(CO(3))(2)(OH)(6) microspheres to core/shell structured ZnO/ZnS composites is proposed by arresting a series of intermediate morphologies.  相似文献   

19.
Luminescent poly(styrene/thiophene) (PSt/PT) core/shell nanoparticles were prepared by oxidative polymerization in the presence of PSt seed particles. PSt seed particles with uniform size distribution were prepared with an anionic surfactant by an emulsion polymerization process, and were used as a template to prepare monodispersive PT‐coated nanoparticles. A luminescent Polythiophene (PT) layer was formed on the surface of PSt nanoparticles by oxidation polymerization with iron chloride (FeCl3) and hydrogen peroxide (H2O2). The mechanism of core/shell formation was found to be the interface‐dominant polymerization induced by the electrostatic attraction between the sulfonate group of anionic surfactant and Fe3+ ions after the diffusion of thiophene monomer to the PSt nanoparticles. Field‐emission scanning electron microscopy and transmission electron microscopy (TEM) proved the core/shell structure, which provided key evidence that PT was incorporated onto the surface of PSt nanoparticles. In addition, the effect of the PT shell thickness on photoluminescent (PL) intensity was investigated by changing the shell thickness of PSt/PT nanoparticles. We observed that the PL intensity increased up to about 30 nm of PT shell thickness, and then decreased due to self‐absorption. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5968–5975, 2008  相似文献   

20.
Poly(alkyl methacrylate)/poly(thiophene) (PAMA/PTh) core/shell nanoparticles were synthesized using a one-pot dual initiation system. A ferric chloride/hydrogen peroxide mixture and sodium vinyl sulfonate were used as an initiator couple and a reactive surfactant, respectively. In the dual initiation, process variables such as the concentration of reactive surfactant, monomer ratio, and monomer type were adjusted to control the particle size of PAMA/PTh core/shell nanoparticles from 192 to 1,172 nm. The inner structure of the core/shell nanoparticles was confirmed in their morphological transition from spherical particles to a crumpled sheath using a solvent extraction method and field-emission scanning electron microscopy. From the spectroscopic data, it was found that the UV-adsorption and fluorescent emission intensity of PAMA/PTh latexes increased with a decrease in the average particle size. The quantum efficiency of all the samples was approximately 12 % and was unaffected by the particle size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号