首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We study the hydrogen abstraction reaction from pentane by chlorine radicals using four different experimental approaches. We use two different solvents (CH2Cl2 and CCl4) and two different chlorine atom sources (photodissociation of dissolved Cl2 and two-photon photolysis of the solvent) to investigate their effects on the recombination and reactivity of the chlorine radical. All four experimental schemes involve direct probing of the transient chlorine population via a charge transfer transition with a solvent molecule. In one of the four approaches, photolysis of Cl2 in dichloromethane, we also monitor the nascent reaction products (HCl) by transient vibrational spectroscopy. Probing both the reactants and the products provides a comprehensive view of this bimolecular reaction in solution. Between one-third and two-thirds of the chlorine radicals that initially escape the solvent cage undergo diffusive geminate recombination with their partner radical (either another chlorine atom or the solvent radical). The rest react with pentane with the bimolecular rate constants k(bi) = (9.5 +/- 0.7) x 10(9) M(-1) s(-1) in CH2Cl2 and k(bi) = (7.4 +/- 2) x 10(9) M(-1) s(-1) in CCl4. The recombination yield phi(rec) depends on both the chlorine atom precursor and the solvent and is larger in the more viscous carbon tetrachloride solutions. The bimolecular reaction rate k(bi) depends only on the solvent and is consistent with a nearly diffusion-limited reaction.  相似文献   

2.
A pulsed laser photolysis-pulsed laser induced fluorescence technique has been employed to study the recombination of mercury and chlorine atoms, Hg + Cl + M --> HgCl + M (1), and the self-reaction of chlorine atoms, Cl + Cl + M --> Cl(2) + M (2). Rate coefficients were determined as a function of pressure (200-600 Torr) and temperature (243-293 K) in N(2) buffer gas and as a function of pressure (200-600 Torr) in He buffer gas at room temperature. For reaction (1) kinetic measurements were obtained under conditions in which either mercury or chlorine atoms were the reactant in excess concentration while simultaneously monitoring the concentration of both reactants. An Arrhenius expression of (2.2 +/- 0.5) x 10(-32) exp{(680 +/- 400)((1)/(T) - (1)/(298))} cm(6) molecule(-2) s(-1) was determined for the third-order recombination rate coefficient in nitrogen buffer gas. The effective second-order rate coefficient for reaction 1 under atmospheric conditions is much smaller than prior determinations using relative rate techniques. For reaction (2) we obtain an Arrhenius expression of (8.4 +/- 2.3) x 10(-33) exp{(850 +/- 470)((1)/(T) - (1)/(298))} cm(6) molecule(-2) s(-1) for the third-order recombination rate coefficient in nitrogen buffer gas. The rate coefficients are reported with a 2sigma error of precision only; however, due to the uncertainty in the determination of absolute chlorine atom concentrations we conservatively estimate an uncertainty of +/-50% in the rate coefficients. For both reactions the observed pressure, temperature, and buffer gas dependencies are consistent with the expected behavior for three-body recombination.  相似文献   

3.
A laser flash photolysis-long path UV-visible absorption technique has been employed to investigate the kinetics of aqueous phase reactions of chlorine atoms (Cl) and dichloride radicals (Cl2(-)) with four organic sulfur compounds of atmospheric interest, dimethyl sulfoxide (DMSO; CH3S(O)CH3), dimethyl sulfone (DMSO2; CH3(O)S(O)CH3), methanesulfinate (MSI; CH3S(O)O-), and methanesulfonate (MS; CH3(O)S(O)O-). Measured rate coefficients at T = 295 +/- 1 K (in units of M(-1) s(-1)) are as follows: Cl + DMSO, (6.3 +/- 0.6) x 10(9); Cl2(-) + DMSO, (1.6 +/- 0.8) x 10(7); Cl + DMSO2, (8.2 +/- 1.6) x 10(5); Cl2(-) + DMSO2, (8.2 +/- 5.5) x 10(3); Cl2(-) + MSI, (8.0 +/- 1.0) x 10(8); Cl + MS, (4.9 +/- 0.6) x 10(5); Cl2(-) + MS, (3.9 +/- 0.7) x 10(3). Reported uncertainties are estimates of accuracy at the 95% confidence level and the rate coefficients for MSI and MS reactions with Cl2(-) are corrected to the zero ionic strength limit. The absorption spectrum of the DMSO-Cl adduct is reported; peak absorbance is observed at 390 nm and the peak extinction coefficient is found to be 5760 M(-1) cm(-1) with a 2sigma uncertainty of +/-30%. Some implications of the new kinetics results for understanding the atmospheric sulfur cycle are discussed.  相似文献   

4.
The reactions of carbonate radical anion [CO3*-, systematic name: trioxidocarbonate*1-] with nitrosyl(II)hemoglobin (HbFe(II)NO) and nitrosyl(II)myoglobin (MbFe(II)NO) were studied by pulse radiolysis in N2O-saturated 0.25 M sodium bicarbonate solutions at pH 10.0 and room temperature. The reactions proceed in two steps: outer-sphere oxidation of the nitrosyliron(II) proteins to their corresponding nitrosyliron(III) forms and subsequent dissociation of NO*. The second-order rate constants measured for the first reaction steps were (4.3 +/- 0.2) x 10(8) and (1.5 +/- 0.3) x 10(8) M(-1) s(-1), for MbFe(II)NO and HbFe(II)NO, respectively. The reactions between nitrogen dioxide and MbFe(II)NO or HbFe(II)NO were studied by pulse radiolysis in N2O-saturated 0.1 M phosphate buffer pH 7.4 containing 5 mM nitrite. Also for the reactions of this oxidant with the nitrosyliron(II) forms of Mb and Hb a two-step reaction was observed: oxidation of the iron was followed by dissociation of NO*. The second-order rate constants measured for the first reaction steps were (2.9 +/- 0.3) x 10(7) and (1.8 +/- 0.3) x 10(7) M(-1) s(-1), for MbFe(II)NO and HbFe(II)NO, respectively. Both radicals appear to be able to oxidize the iron(II) centers of the proteins directly. Only for the reactions with HbFe(II)NO it cannot be excluded that, in a parallel reaction, CO3*- and NO2* first react with amino acid(s) of the globin, which then oxidize the nitrosyliron(II) center.  相似文献   

5.
The reaction of peroxynitrite with violet-colored MnO4- leads to the formation of green MnO42-. The rate constant for the reaction at pH 11.7, 5.5 mM ionic strength, and 25 degrees C, 0.020 +/- 0.001 s(-1), is independent of the MnO4- concentration; homolysis of ONOO- to NO* and O2*- is the rate-determining step. Both NO* and O2*- react with MnO4- with rate constants of (3.5 +/- 0.7) x 10(6) M(-1)s(-1) and (5.7 +/- 0.9) x 10(5) M(-1)s(-1), respectively. The activation volume and activation energy for breaking the N-O bond are 12.6 +/- 0.8 cm(3)mol(-1) and 102 +/- 2 kJ mol(-1), respectively. In combination with the known standard Gibbs energies of formation of NO* and O2*-, the rate of the reaction of NO* and O2*-, and the pKa of ONOOH, we find a standard Gibbs energy of formation of ONOO- of +68 +/- 1 kJ mol(-1), and of ONOOH of +31 +/- 1 kJ mol(-1).  相似文献   

6.
Reactions of alpha-hydroxyalkyl radicals with 3,5-pyridinedicarboxylic acid (3,5-PDCA) and nicotinic acid (NA) were studied at appropriate pHs in aqueous solutions by pulse radiolysis technique. At pH 1, CH(3)C*HOH and *CH(2)OH radicals were found to react with 3,5-PDCA by rate constants of 2.2 x 10(9) and 5.1 x 10(8) dm(3) mol(-1) s(-1), respectively, giving radical adduct species. The adduct species formed in the reaction of CH(3)C*HOH radicals with 3,5-PDCA underwent unimolecular decay (k = 9.8 x 10(4) s(-1)) giving pyridinyl radicals. Reaction of (CH(3))(2)C*OH, CH(3)C*HOH, and *CH(2)OH radicals with NA at pH 3.3 gave the adduct species which subsequently decayed to the pyridinyl radicals. At pH 1, wherein NA is present in the protonated form, (CH(3))(2)C*OH radicals directly transfer electrons to NA, whereas CH(3)C*HOH and *CH(2)OH radicals react with higher rate constants compared with those at pH 3.3, initially giving the adduct species which subsequently undergo elimination reaction giving pyridinyl radicals. Reactions of alpha-hydroxyalkyl radicals with 3,5-pyridinedicarboxylic acid and nicotinic acid are found to proceed by an addition-elimination pathway that provides one of the few examples of organic inner sphere electron-transfer reactions. Rate constant for the addition reaction as well as rate of elimination varies with the reduction potential of alpha-hydroxyalkyl radicals.  相似文献   

7.
Wang L  Margerum DW 《Inorganic chemistry》2002,41(23):6099-6105
The disproportionation of chlorine dioxide in basic solution to give ClO2- and ClO3- is catalyzed by OBr- and OCl-. The reactions have a first-order dependence in both [ClO2] and [OX-] (X = Br, Cl) when the ClO2- concentrations are low. However, the reactions become second-order in [ClO2] with the addition of excess ClO2-, and the observed rates become inversely proportional to [ClO2-]. In the proposed mechanisms, electron transfer from OX- to ClO2(k1OBr- = 2.05 +/- 0.03 M(-1) x s(-1) for OBr(-)/ClO2 and k1OCl-= 0.91 +/- 0.04 M(-1) x s(-1) for OCl-/ClO2) occurs in the first step to give OX and ClO2-. This reversible step (k1OBr-/k(-1)OBr = 1.3 x 10(-7) for OBr-/ClO2, / = 5.1 x 10(-10) for OCl-/ClO2) accounts for the observed suppression by ClO2-. The second step is the reaction between two free radicals (XO and ClO2) to form XOClO2. These rate constants are = 1.0 x 10(8) M(-1) x s(-1) for OBr/ClO2 and = 7 x 10(9) M(-1) x s(-1) for OCl/ClO2. The XOClO2 adduct hydrolyzes rapidly in the basic solution to give ClO3- and to regenerate OX-. The activation parameters for the first step are DeltaH1(++) = 55 +/- 1 kJ x mol(-1), DeltaS1(++) = - 49 +/- 2 J x mol(-1) x K(-1) for the OBr-/ClO2 reaction and DeltaH1(++) = 61 +/- 3 kJ x mol(-1), DeltaS1(++) = - 43 +/- 2 J x mol(-1) x K(-1) for the OCl-/ClO2 reaction.  相似文献   

8.
The title reactions were studied using laser flash photolysis/laser-induced-fluorescence (FP-LIF) techniques. The two spin-orbit states, Cl*(2P(1/2)) and Cl(2P(3/2)), were detected using LIF at 135.2 and 134.7 nm, respectively. Measured reaction rate constants were as follows (units of cm3 molecule(-1) s(-1)): k(Cl(2P(3/2))+CH3OH) = (5.35 +/- 0.24) x 10(-11), k(Cl(2P(3/2))+C2H5OH) = (9.50 +/- 0.85) x 10(-11), k(Cl(2P(3/2))+n-C3H7OH) = (1.71 +/- 0.11) x 10(-10), and k(Cl(2P(3/2))+i-C3H7OH) = (9.11 +/- 0.60) x 10(-11). Measured rate constants for total removal of Cl*(2P(1/2)) in collisions with CH3OH, C2H5OH, n-C3H7OH, and i-C3H7OH were (1.95 +/- 0.13) x 10(-10), (2.48 +/- 0.18) x 10(-10), (3.13 +/- 0.18) x 10(-10), and (2.84 +/- 0.16) x 10(-10), respectively; quoted errors are two-standard deviations. Although spin-orbit excited Cl*(2P(1/2)) atoms have 2.52 kcal/mol more energy than Cl(2P(3/2)), the rates of chemical reaction of Cl*(2P(1/2)) with CH3OH, C2H5OH, n-C3H7OH, and i-C3H7OH are only 60-90% of the corresponding Cl(2P(3/2)) atom reactions. Under ambient conditions spin-orbit excited Cl* atoms are responsible for 0.5%, 0.5%, 0.4%, and 0.7% of the observed reactivity of thermalized Cl atoms toward CH3OH, C2H5OH, n-C3H7OH, and i-C3H7OH, respectively.  相似文献   

9.
The reaction of *OH with 2'-deoxyguanosine yields two transient species, both identified as OH adducts (G*-OH), with strongly different reactivity towards O2, or other oxidants, or to reductants. One of these, identified as the OH adduct at the C-8 position (yield 17% relative to *OH), reacts with oxygen with k=4 x 10(9)M(-1)s(-1); in the absence of oxygen it undergoes a rapid ring-opening reaction (k = 2 x 10(5) s(-1) at pH4-9), visible as an increase of absorbance at 300-310 nm. This OH adduct and its ring-opened successor are one-electron reductants towards, for example, methylviologen or [Fe(III)(CN)6]3-. The second adduct, identified as the OH adduct at the 4-position (yield of 60-70% relative to *OH), has oxidizing properties (towards N,N,N',N'-tetra-methyl-p-phenylenediamine, promethazine, or [Fe(II)(CN)6]4-). This OH adduct undergoes a slower transformation reaction (k = 6 x 10(3) s(-1) in neutral, unbuffered solution) to produce the even more strongly oxidizing (deprotonated, depending on pH) 2'-deoxyguanosine radical cation, and it practically does not react with oxygen (k< or = 10(6)M(-1)s(-1)). The (deprotonated) radical cation, in dilute aqueous solution, does not give rise to 8-oxoguanosine as a product. However, it is able to react with ribose with k< or =4 x 10(3)M(-1)S(-1).  相似文献   

10.
The rate constant for the reaction of the isocyanato radical, NCO(X2Pi) with chlorine atoms, Cl(2P), has been measured at 293 +/- 2 and 345 +/- 3 K to be (6.9 +/- 3.8) x 10(-11) and (4.0 +/- 2.2) x 10(-11) cm3 molecules(-1) s,(-1) respectively, where the uncertainties include both random and systematic errors. The measurements were carried out at pressures of 1.3-6.2 Torr with either Ar or CF4 as the bath gas and were independent of both pressure and nature of the third body. Equal concentrations of NCO and Cl atoms were created by 248 nm photolysis of ClNCO. The reaction was monitored by following the temporal dependence of NCO(X2Pi) using time-resolved infrared absorption spectroscopy on rotational transitions of the NCO(10(1)1) <-- (00(1)0) combination band. The reaction rate constant was determined by using a simple chemical model and minimizing the sum of the residuals between the experimental and computer generated temporal NCO concentration profiles. The reaction Cl + ClNCO --> Cl2 + NCO was found to contribute to the observed NCO. The rate constant for this reaction was found to be (2.4 +/- 1.6) x 10(-13) and (1.9 +/- 1.2) x 10(-13) cm3 molecules(-1) s,(-1) at 293 and 345 K, respectively, where the uncertainties include both random and systematic error.  相似文献   

11.
ABTS2-, 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulfonate) dianion, was used as a reference to compare the reactivity of peroxyl radicals of two amino acids, glycine and valine, in aqueous solutions at natural pH. Peroxyl radicals were produced by pulse radiolysis and the product of their reaction with ABTS2- the ABTS*- radical was observed spectrophotometrically. Experimental kinetic traces were fitted using chemical simulation. The rate constants of reactions of glycine and valine peroxyl radicals with ABTS2- were (6.0+/-0.2)x10(6) and (1.3+/-0.1)x10(5) M-1.s-1, respectively. Moreover, it was found that only 60% of glycine radicals formed upon its reaction with *OH radicals reacted with molecular oxygen to yield peroxyl radicals. Comparison of experimental data with simulations of chemical reactions in irradiated ABTS and ABTS/NaSCN solutions showed that ABTS*- forms in the reaction with *OH with a yield of 43% and rate constant of (5.4+/-0.2)x10(9) M-1.s-1 and in the reaction with (SCN)2*- with a yield of 57% and rate constant of (8.0+/-0.2)x10(8) M-1.s-1.  相似文献   

12.
Smog chamber/Fourier transform infrared (FTIR) and laser-induced fluorescence (LIF) spectroscopic techniques were used to study the atmospheric degradation of CH3CHF2. The kinetics and products of the Cl(2P(3/2)) (denoted Cl) atom- and the OH radical-initiated oxidation of CH3CHF2 in 700 Torr of air or N2; diluents at 295 +/- 2 K were studied using smog chamber/FTIR techniques. Relative rate methods were used to measure k(Cl + CH3CHF2) = (2.37 +/- 0.31) x 10(-13) and k(OH + CH3CHF2) = (3.08 +/- 0.62) x 10(-14) cm3 molecule(-1) s(-1). Reaction with Cl atoms gives CH3CF2 radicals in a yield of 99.2 +/- 0.1% and CH2CHF2 radicals in a yield of 0.8 +/- 0.1%. Reaction with OH radicals gives CH3CF2 radicals in a yield >75% and CH2CHF2 radicals in a yield <25%. Absolute rate data for the Cl reaction were measured using quantum-state selective LIF detection of Cl(2P(j)) atoms under pseudo-first-order conditions. The rate constant k(Cl + CH3CHF2) was determined to be (2.54 +/- 0.25) x 10(-13) cm3 molecule(-1) s(-1) by the LIF technique, in good agreement with the relative rate results. The removal rate of spin-orbit excited-state Cl(2P(1/2)) (denoted Cl) in collisions with CH3CHF2 was determined to be k(Cl + CH3CHF2) = (2.21 +/- 0.22) x 10(-10) cm3 molecule(-1) s(-1). The atmospheric photooxidation products were examined in the presence and absence of NO(x). In the absence of NO(x)(), the Cl atom-initiated oxidation of CH3CHF2 in air leads to formation of COF2 in a molar yield of 97 +/- 5%. In the presence of NO(x), the observed oxidation products include COF2 and CH3COF. As [NO] increases, the yield of COF2 decreases while the yield of CH3COF increases, reflecting a competition for CH3CF2O radicals. The simplest explanation for the observed dependence of the CH3COF yield on [NO(x)] is that the atmospheric degradation of CH3CF2H proceeds via OH radical attack to give CH3CF2 radicals which add O2 to give CH3CF2O2 radicals. Reaction of CH3CF2O2 radicals with NO gives a substantial fraction of chemically activated alkoxy radicals, [CH3CF2O]. In 1 atm of air, approximately 30% of the alkoxy radicals produced in the CH3CF2O2 + NO reaction possess sufficient internal excitation to undergo "prompt" (rate >10(10) s(-1)) decomposition to give CH3 radicals and COF2. The remaining approximately 70% become thermalized, CH3CF2O, and undergo decomposition more slowly at a rate of approximately 2 x 10(3) s(-1). At high concentrations (>50 mTorr), NO(x) is an efficient scavenger for CH3CF2O radicals leading to the formation of CH3COF and FNO.  相似文献   

13.
Relative rate techniques were used to study the kinetics of the reactions of Cl atoms and OH radicals with ethylene glycol diacetate, CH3C(O)O(CH2)2OC(O)CH3, in 700 Torr of N2/O2 diluent at 296 K. The rate constants measured were k(Cl + CH3C(O)O(CH2)2OC(O)CH3) = (5.7 +/- 1.1) x 10(-12) and k(OH + CH3C(O)O(CH2)2OC(O)CH3) = (2.36 +/- 0.34) x 10(-12) cm3 molecule-1 s-1. Product studies of the Cl atom initiated oxidation of ethylene glycol diacetate in the absence of NO in 700 Torr of O2/N2 diluent at 296 K show the primary products to be CH3C(O)OC(O)CH2OC(O)CH3, CH3C(O)OC(O)H, and CH3C(O)OH. Product studies of the Cl atom initiated oxidation of ethylene glycol diacetate in the presence of NO in 700 Torr of O2/N2 diluent at 296 K show the primary products to be CH3C(O)OC(O)H and CH3C(O)OH. The CH3C(O)OCH2O* radical is formed during the Cl atom initiated oxidation of ethylene glycol diacetate, and two loss mechanisms were identified: reaction with O2 to give CH3C(O)OC(O)H and alpha-ester rearrangement to give CH3C(O)OH and HC(O) radicals. The reaction of CH3C(O)OCH2O2* with NO gives chemically activated CH3C(O)OCH2O* radicals which are more likely to undergo decomposition via the alpha-ester rearrangement than CH3C(O)OCH2O* radicals produced in the peroxy radical self-reaction.  相似文献   

14.
The unimolecular reactions of CF3CFClCH2Cl molecules formed with 87 kcal mol(-1) of vibrational energy by recombination of CF3CFCl and CH2Cl radicals at room temperature have been characterized by the chemical activation technique. The 2,3-ClH and 2,3-FH elimination reactions, which have rate constants of (2.5 +/- 0.8) x 10(4) and (0.38 +/- 0.11) x 10(4) s(-1), respectively, are the major reactions. The 2,3-FCl interchange reaction was not observed. The trans (or E)-isomers of CF3CFCHCl and CF3CClCHCl are favored over the cis (or Z)-isomers. Density functional theory at the B3PW91/6-31G(d',p') level was used to evaluate thermochemistry and structures of the molecule and transition states. This information was used to calculate statistical rate constants. Matching the calculated to the experimental rate constants for the trans-isomers gave threshold energies of 62 and 63 kcal mol(-1) for HCl and HF elimination, respectively. The threshold energy for FCl interchange must be 3-4 kcal mol(-1) higher than for HF elimination. The results for CF3CFClCH2Cl are compared to those from CF3CFClCH3; the remarkable reduction in rate constants for HCl and HF elimination upon substitution of one Cl atom for one H atom is a consequence of both a lower E and higher threshold energies for CF3CFClCH2Cl.  相似文献   

15.
We observe chlorine radical dynamics in solution following two-photon photolysis of the solvent, dichloromethane. In neat CH(2)Cl(2), one-third of the chlorine radicals undergo diffusive geminate recombination, and the rest abstract a hydrogen atom from the solvent with a bimolecular rate constant of (1.35 +/- 0.06) x 10(7) M(-1) s(-1). Upon addition of hydrogen-containing solutes, the chlorine atom decay becomes faster, reflecting the presence of a new reaction pathway. We study 16 different solutes that include alkanes (pentane, hexane, heptane, and their cyclic analogues), alcohols (methanol, ethanol, 1-propanol, 2-propanol, and 1-butanol), and chlorinated alkanes (cyclohexyl chloride, 1-chlorobutane, 2-chlorobutane, 1,2-dichlorobutane, and 1,4-dichlorobutane). Chlorine reactions with alkanes have diffusion-limited rate constants that do not depend on the molecular structure, indicating the absence of a potential barrier. Hydrogen abstraction from alcohols is slower than from alkanes and depends weakly on molecular structure, consistent with a small reaction barrier. Reactions with chlorinated alkanes are the slowest, and their rate constants depend strongly on the number and position of the chlorine substituents, signaling the importance of activation barriers to these reactions. The relative rate constants for the activation-controlled reactions agree very well with the predictions of the gas-phase structure-activity relationships.  相似文献   

16.
Absolute rate data and product branching ratios for the reactions Cl + HO2 --> HCl + O2 (k1a) and Cl + HO2 --> OH + ClO (k1b) have been measured from 226 to 336 K at a total pressure of 1 Torr of helium using the discharge flow resonance fluorescence technique coupled with infrared diode laser spectroscopy. For kinetic measurements, pseudo-first-order conditions were used with both reagents in excess in separate experiments. HO2 was produced by two methods: through the termolecular reaction of H atoms with O2 and also by the reaction of F atoms with H2O2. Cl atoms were produced by a microwave discharge of Cl2 in He. HO2 radicals were converted to OH radicals prior to detection by resonance fluorescence at 308 nm. Cl atoms were detected directly at 138 nm also by resonance fluorescence. Measurement of the consumption of HO2 in excess Cl yielded k1a and measurement of the consumption of Cl in excess HO2 yielded the total rate coefficient, k1. Values of k1a and k1 derived from kinetic experiments expressed in Arrhenius form are (1.6 +/- 0.2) x 10(-11) exp[(249 +/- 34)/T] and (2.8 +/- 0.1) x 10(-11) exp[(123 +/- 15)/T] cm3 molecule(-1) s(-1), respectively. As the expression for k1 is only weakly temperature dependent, we report a temperature-independent value of k1 = (4.5 +/- 0.4) x 10(-11) cm3 molecule(-1) s(-1). Additionally, an Arrhenius expression for k1b can also be derived: k1b = (7.7 +/- 0.8) x 10(-11) exp[-(708 +/- 29)/T] cm3 molecule(-1) s(-1). These expressions for k1a and k1b are valid for 226 K < or = T < or = 336 and 256 K < or = T < or = 296 K, respectively. The cited errors are at the level of a single standard deviation. For the product measurements, an excess of Cl was added to known concentrations of HO2 and the reaction was allowed to reach completion. HCl product concentrations were determined by IR absorption yielding the ratio k1a/k1 over the temperature range 236 K < or = T < or = 296 K. OH product concentrations were determined by resonance fluorescence giving rise to the ratio k1b/k1 over the temperature range 226 K < or = T < or = 336 K. Both of these ratios were subsequently converted to absolute numbers. Values of k1a and k1b from the product experiments expressed in Arrhenius form are (1.5 +/- 0.1) x 10(-11) exp[(222 +/- 17)/T] and (10.6 +/- 1.5) x 10(-11) exp[-(733 +/- 41)/T] cm3 molecule(-1) s(-1), respectively. These expressions for k1a and k1b are valid for 256 K < or = T < or = 296 and 226 K < or = T < or = 336 K, respectively. A combination of the kinetic and product data results in the following Arrhenius expressions for k1a and k1b of (1.4 +/- 0.3) x 10(-11) exp[(269 +/- 58)/T] and (12.7 +/- 4.1) x 10(-11) exp[-(801 +/- 94)/T] cm3 molecule(-1) s(-1), respectively. Numerical simulations were used to check for interferences from secondary chemistry in both the kinetic and product experiments and also to quantify the losses incurred during the conversion process HO2 --> OH for detection purposes.  相似文献   

17.
The pressure dependence of the recombination reaction Cl + FC(O)O + M --> FC(O)OCl + M has been investigated at 296 K. FC(O)O radicals and Cl atoms were generated by laser flash photodissociation of FC(O)OO(O)CF at 193 nm in mixtures with Cl2 and He or SF6 over the total pressure range 8-645 Torr. The measured FC(O)O radical and F atom yields in the photolysis are 0.33 +/- 0.06 and 0.67 +/- 0.06. The reaction lies in the falloff range approaching the high-pressure limit. The extrapolations toward the limiting low- and high-pressure ranges were carried out using a reduced falloff curves formalism, which includes a recent implementation for the strong-collision broadening factors. The resulting values for the low-pressure rate coefficients are (2.2 +/- 0.4) x 10(-28)[He], (4.9 +/- 0.9) x 10(-28)[SF6], (1.9 +/- 0.3) x 10(-28)[Cl2] and (5.9 +/- 1.1) x 10(-28)[FC(O)OO(O)CF] cm3 molecule(-1) s(-1). The derived high-pressure rate coefficient is (4.4 +/- 0.8) x 10(-11) cm3 molecule(-1) s(-1). For the reaction Cl + FC(O)OCl --> Cl2 + FC(O)O a rate coefficient of (1.6 +/- 0.3) x 10(-11) cm3 molecule(-1) s(-1) was determined. The high-pressure rate coefficient was theoretically interpreted using SACM/CT calculations on an ab initio electronic potential computed at the G3S level of theory. Standard heat of formation values of -99.9 and -102.5 kcal mol(-1) were computed at the G3//B3LYP/6-311++G(3df,3pd) level of theory for cis-FC(O)OCl and trans-FC(O)OCl, respectively. The computed electronic barrier for the conversion between the trans and cis conformers is 8.9 kcal mol(-1). On the basis of the present results, the above reactions are expected to have a negligible impact on stratospheric ozone levels.  相似文献   

18.
By monitoring the decay of SO4*- after flash photolysis of aqueous solutions of S2O82- at different pH values, the kinetics of the reaction of SO4*- radicals with gallic acid and the gallate ion was investigated. The bimolecular rate constants for the reactions of the sulfate radicals with gallic acid and the gallate ion were found to be (6.3 +/- 0.7) x 10(8) and (2.9 +/- 0.2) x 10(9) M(-1) s(-1), respectively. On the basis of the oxygen-independent second-order decay kinetics and on their absorption spectra, the organic radicals formed as intermediates of these reactions were assigned to the corresponding phenoxyl radicals. DFT calculations in the gas phase and aqueous solution support formation of the phenoxyl radicals by H abstraction from the phenols to the sulfate radical anion. The observed recombination of the phenoxyl radicals of gallic acid to yield substituted biphenyls and quinones is also supported by the calculations. HPLC/MS product analysis showed formation of one of the predicted quinones.  相似文献   

19.
Relative rate techniques were used to study the kinetics of the reactions of Cl atoms and OH radicals with CF(3)CH(2)C(O)H and CF(3)CH(2)CH(2)OH in 700 Torr of N(2) or air diluent at 296 +/- 2 K. The rate constants determined were k(Cl+CF(3)CH(2)C(O)H) = (1.81 +/- 0.27) x 10(-11), k(OH+CF(3)CH(2)C(O)H) = (2.57 +/- 0.44) x 10(-12), k(Cl+CF(3)CH(2)CH(2)OH) = (1.59 +/- 0.20) x 10(-11), and k(OH+CF(3)CH(2)CH(2)OH) = (6.91 +/- 0.91) x 10(-13) cm(3) molecule(-1) s(-1). Product studies of the chlorine initiated oxidation of CF(3)CH(2)CH(2)OH in the absence of NO show the sole primary product to be CF(3)CH(2)C(O)H. Product studies of the chlorine initiated oxidation of CF(3)CH(2)CH(2)OH in the presence of NO show the primary products to be CF(3)CH(2)C(O)H (81%), HC(O)OH (10%), and CF(3)C(O)H. Product studies of the chlorine initiated oxidation of CF(3)CH(2)C(O)H in the absence of NO show the primary products to be CF(3)C(O)H (76%), CF(3)CH(2)C(O)OH (14%), and CF(3)CH(2)C(O)OOH (< or =10%). As part of this work, an upper limit of k(O(3)+CF(3)CH(2)CH(2)OH) < 2 x 10(-21) cm(3) molecule(-1) s(-1) was established. Results are discussed with respect to the atmospheric chemistry of fluorinated alcohols.  相似文献   

20.
The values of the rate constants for the reactions of the sulfate (2.5 x 10(9) M(-1) s(-1)) and hydrogen phosphate (2.2 x 10(8) M(-1) s(-1)) radicals with silica nanoparticles are obtained by flash photolysis experiments with silica suspensions containing S(2)O(8)(2-) or P(2)O(8)(4-), respectively. The interaction of these radicals with the silica nanoparticles leads to formation of transients, probably adsorbed sulfate and hydrogen phosphate radicals, with absorption maxima at around 320 and 350 nm, respectively. A different mechanism takes place for the interaction of the less oxidizing dithiocyanate radicals with the silica nanoparticles. These radicals selectively react with the dissociated silanol groups of the nanoparticles with a rate constant at 298.2K of 7 x 10(7) M(-1) s(-1) (per mol of SiO(-) groups), and there is no evidence for their adsorption at the surface. All the results are discussed in terms of the Smoluchowski equation and redox potential of the inorganic radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号