首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
生物炼制是以可再生生物质资源为原料,生产能源与化工产品的新兴工业模式。是转变经济增长模式,保障社会经济可持续发展的重大战略需求。微生物细胞工厂是生物炼制技术至关重要的核心。世界各国纷纷设立重大研究计划支持细胞工厂的研究,以期获得生物炼制技术的领先地位。本文简要概括了细胞工厂和生物炼制这一新兴工业模式,回顾了生物炼制细胞工厂的重大计划和进展,讨论了目前亟待解决的关键问题和研究对策。  相似文献   

2.
细胞工厂与生物炼制   总被引:1,自引:0,他引:1  
张延平  李寅  马延和 《化学进展》2007,19(7):1076-1083
生物炼制是以可再生生物质资源为原料,生产能源与化工产品的新兴工业模式.是转变经济增长模式,保障社会经济可持续发展的重大战略需求.微生物细胞工厂是生物炼制技术至关重要的核心.世界各国纷纷设立重大研究计划支持细胞工厂的研究,以期获得生物炼制技术的领先地位.本文简要概括了细胞工厂和生物炼制这一新兴工业模式,回顾了生物炼制细胞工厂的重大计划和进展,讨论了目前亟待解决的关键问题和研究对策.  相似文献   

3.
生物炼制是以可再生生物质资源为原料,生产能源与化工产品的新兴工业模式.是转变经济增长模式,保障社会经济可持续发展的重大战略需求.微生物细胞工厂是生物炼制技术至关重要的核心.世界各国纷纷设立重大研究计划支持细胞工厂的研究,以期获得生物炼制技术的领先地位.本文简要概括了细胞工厂和生物炼制这一新兴工业模式,回顾了生物炼制细胞工厂的重大计划和进展,讨论了目前亟待解决的关键问题和研究对策.  相似文献   

4.
造纸污水中有机污染物的分布分析   总被引:1,自引:0,他引:1  
以十七烷酸为内标试剂,用甲基叔丁基醚对水样进行液 液萃取后,用三甲基氯代硅烷和N-O-双-(三甲基硅烷基)三氟乙酰胺进行硅烷化处理,以吡啶为溶剂,用GC-MS仪对造纸厂二次纤维造纸车间的污水样进行定性和相对含量分析,检出约50种有机污染物。 主要是植物原料的小分子溶出物、树脂酸、脂肪酸及各种化学添加剂。 树脂酸在制浆污水中的含量较大,主要来自造纸原料和松香施胶剂;脂肪酸、芳香酸及其衍生物主要存在于澄清白水和混合污水中,主要来源于二次纤维浆、造纸原料与各种添加剂;相对而言,最终进入污水处理厂前的混合污水中有机物质种类最多;真空泵密封水中有机污染物的种类最少,主要是难降解性的芳香类化合物。 讨论了不同生产工段污水中各种有机污染物质的差异和来源及对环境的危害性。  相似文献   

5.
甘蔗是热带和亚热带地区的一种经济作物,其渣可作为造纸原料。制浆过程实际上是一个脱木质素使纤维分离的过程,而制浆工艺的选择和木质素的利用在很大程度上取决于木质素的结构。前人为此曾作过许多工作。但都忽略了各个形态学位木质素的差别。因此,尚缺少对甘蔗木质素结构的确切描述。本工作试图在此方面作一探索,以求揭示不同细胞中木质素结构的异同, 本文首先着眼于纤维组织带中的木质素结构。为了获得可比较的信息及使分离的木  相似文献   

6.
胡敏酸铵是具有类似植物生长刺激素作用的一种肥料,可以提早种籽发芽,促进根系发育,加强植物体内有机物的合成和积累,促进土壤有机质的分解与转化,有利于作物对可溶性养分的吸收,达到农作物增产的目的。在制浆造纸工业中,纤维原料经碱液蒸煮产生大量的黑液,如果直接排入江河,将会污染水源,危害农业和渔业的生产,造成严重的社会公害。在无产阶级文化大革命中,造纸行业广大职工大搞综合利用,利用硫酸盐制浆的黑液制成了农肥胡敏  相似文献   

7.
生物炼制是人类面对日益枯竭的化石资源和其所产生的严重环境污染的必然选择。本文从生物炼制和石油炼制的比较出发简要介绍了生物炼制的概念、基本分类和理论框架,并重点分析了生物炼制过程工程的相关技术和进展,主要包括生物质原料的预处理、过程相关的酶水解技术以及发酵菌种改良等。本文还概括了生物炼制相关的碳水化合物、脂肪类以及其他类产品的相关产品群,分析了一些重要生物基产品的生产过程、研发趋势以及所面临的机遇和挑战。  相似文献   

8.
生物炼制是人类面对日益枯竭的化石资源和其所产生的严重环境污染的必然选择.本文从生物炼制和石油炼制的比较出发简要介绍了生物炼制的概念、基本分类和理论框架,并重点分析了生物炼制过程工程的相关技术和进展,主要包括生物质原料的预处理、过程相关的酶水解技术以及发酵菌种改良等.本文还概括了生物炼制相关的碳水化合物、脂肪类以及其他类产品的相关产品群,分析了一些重要生物基产品的生产过程、研发趋势以及所面临的机遇和挑战.  相似文献   

9.
生物炼制是人类面对日益枯竭的化石资源和其所产生的严重环境污染的必然选择.本文从生物炼制和石油炼制的比较出发简要介绍了生物炼制的概念、基本分类和理论框架,并重点分析了生物炼制过程工程的相关技术和进展,主要包括生物质原料的预处理、过程相关的酶水解技术以及发酵菌种改良等.本文还概括了生物炼制相关的碳水化合物、脂肪类以及其他类产品的相关产品群,分析了一些重要生物基产品的生产过程、研发趋势以及所面临的机遇和挑战.  相似文献   

10.
本文探讨了甘蔗渣等草类原料对碱性亚硫酸盐蒽醌(AS—AQ)制浆的适应性。在蔗渣AS—AQ法制浆中,AQ的添加量以0.05—0.15%(对蔗渣原料)为宜;最协调的碱性条件是Na2SO_3/总药量为65—85%的弱碱性范围,此时的脱木素作用最强、选择性最好。与常规Soda法相比,蔗渣AS—AQ浆具有得率高、未漂浆白度高、易漂,物理性能还有所改善等优点,还具备容易制取硬度很低的全漂化学软浆的一大特点,这些都是木材原料所不具备的。  相似文献   

11.
The bagasse is the waste of sugar-making industry, it contains 50% of cellulose and is the major material of pulp and paper industry in Guangdong, Guangxi, Fujian, Sichuan provinces. In industry, the bagasse chemical pulp is often made by using alkali, most of bagasse pulp mills without recovery of soda and organic materials, and are discharged into the river because of technologic and economic reason. This makes serious pollution to the water and affects the ecological balance.  相似文献   

12.
This work provides a critical overview of the recent trends toward the development of modern, dissolving pulp production technologies that respond to the current challenges and opportunities for the emerging low-carbon bioresource economy. Special attention is paid to recent advancements in prehydrolysis kraft pulping and conversion of paper grade pulp to dissolving pulp, with emphasis on the valorization of hemicellulose to value-added products. A comprehensive analysis of the current and future developmental opportunities for novel bioprocessing technologies and new products from dissolving pulp that aim to improve the process economics and enhance the industry competitiveness is presented and discussed.  相似文献   

13.
Pectinase production from Bacillus subtilis SS was optimized under solid-state fermentation (5,943 U/g of dry bacterial bran). The pectinase produced was stable in neutral to alkaline pH range at 70 degrees C; therefore, the suitability of this pectinase in pulp and paper industry was investigated. The enzyme pretreatment process was optimized, and a pectinase dose of 5 IU/g of oven-dried pulp (10% consistency) at pH 9.5 temperature 70 degrees C after 150 min of treatment gave the best pretreatment to the pulp. An increase of 4.3% in brightness along with an increase of 14.8 and 65.3% in whiteness and fluorescence, respectively, whereas a 15% decrease in the yellowness of the pretreated pulp were observed. There was a 5.85% reduction in kappa number and 6.1% reduction in permanganate number along with a reduction in the chemical oxygen demand value. Significant characteristics showed by pectinase open new possibilities of application of this cellulase-free enzyme in the pulp and paper industry by reducing the negative environmental impact of chemicals apart from improving the properties of paper.  相似文献   

14.
Electron treatment of wood pulp for the viscose process   总被引:3,自引:0,他引:3  
Electron processing is currently being evaluated by several viscose producers for integration into their process. The viscose industry converts dissolving wood pulp into products such as staple fibre, filament, cord, film, packaging, and non-edible sausage casings. These materials are used in the clothing, drapery, hygiene, automobile, food, and packaging industries. Viscose producers are facing increasingly high production costs and stringent environmental regulations that have forced some plants to close. Electron treatment of wood pulp can significantly reduce the amounts of chemicals used for producing viscose and the production of hazardous pollutants. Acsion Industries has worked with companies worldwide to demonstrate the benefits of using electron treated pulp for producing viscose (rayon). This paper describes the viscose process, the benefits of using electron treatment in the viscose process, and Acsion’s efforts in developing this technology.  相似文献   

15.
The key to expanding the energy supply, increasing energy security, and reducing the dependency on foreign oil is to develop advanced technologies to efficiently transform our renewable bioresources into domestically produced bioenergy and bioproducts. Conventional biorefineries, i.e., forest products industry’s pulp and paper mills with long history of sustainable utilization of lignocellulose (wood), offer a suitable platform for being expanded into future integrated forest biorefineries. Due to the pre-existing infrastructure in current forest products operations, this could present a very cost-effective approach to future biorefineries. In order to better understand the overall process, technical, economic, and environmental impacts, a detailed process modeling of the whole integrated forest biorefinery is presented here. This approach uses a combination of Aspen Plus®, WinGEMS®, and Microsoft Excel® to simulate the entire biorefinery in detail with sophisticated communication interface between the three simulations. Preliminary results for a simple case study of an integrated biorefinery show the feasibility of this approach. Further investigations, including additional details, more process options, and complete integration, are currently underway.  相似文献   

16.
Microfibrillated cellulose and new nanocomposite materials: a review   总被引:3,自引:1,他引:2  
Due to their abundance, high strength and stiffness, low weight and biodegradability, nano-scale cellulose fiber materials (e.g., microfibrillated cellulose and bacterial cellulose) serve as promising candidates for bio-nanocomposite production. Such new high-value materials are the subject of continuing research and are commercially interesting in terms of new products from the pulp and paper industry and the agricultural sector. Cellulose nanofibers can be extracted from various plant sources and, although the mechanical separation of plant fibers into smaller elementary constituents has typically required high energy input, chemical and/or enzymatic fiber pre-treatments have been developed to overcome this problem. A challenge associated with using nanocellulose in composites is the lack of compatibility with hydrophobic polymers and various chemical modification methods have been explored in order to address this hurdle. This review summarizes progress in nanocellulose preparation with a particular focus on microfibrillated cellulose and also discusses recent developments in bio-nanocomposite fabrication based on nanocellulose.  相似文献   

17.
For more cost-effective and/or value-added utilization of cellulosic fibers in pulp and paper industry, fiber engineering is an important concept. Essentially, fibers can be engineered via various mechanical, chemical, and biological processes. In the current study, the combined use of laccase and TEMPO was applied to introduce carboxyl and aldehyde groups to softwood-derived cellulosic fibers (bleached softwood kraft pulp). The process conditions in preparation of the engineered fibers were optimized. Under the conditions studied, the maximum increases in carboxyl and aldehyde contents were 360 % and 225 %, respectively. The effectiveness of the laccase/TEMPO system could be well explained by the reaction cycles in catalytic oxidation pathways. The findings of the current work may provide useful insights into the enzymatic modification of cellulosic fibers for papermaking applications.  相似文献   

18.
This paper presents the results of research on the granulation process of leather industry waste, i.e., tanning shavings. It is economically justified to granulate this waste together with mineral additives that are useful in the processes of their further processing. Unfortunately, the granulation of raw, unsorted shavings does not obtain desired results due to their unusual properties. In this study, the possibilities of agglomeration of this waste were examined by a new method consisting of the production and then the granulation of wet pulp. During granulation, no additional binding liquid is added to the granulated bed. As part of this work, the specific surface of granulated shavings, the granulometric composition of the obtained agglomerates, and their strength parameters were determined. The use of a vibrating disc granulator, the addition of a water glass solution (in the pulp), dolomite, and gypsum made it possible to obtain durable, mechanically stable granules.  相似文献   

19.
Although noble metal nanocatalysts show superior performance to conventional catalysts, they can be problematic when balancing catalytic efficiency and reusability. In order to address this dilemma, we developed a smart paper transformer (s-PAT) to support nanocatalysts, based on easy phase conversion between paper and pulp, for the first time. The pulp phase was used to maintain the high catalytic efficiency of the nanocatalysts and the transformation to paper enabled their high reusability. Herein, as an example of smart paper transformers, a novel chromatography paper-supported Au nanosponge (AuNS/pulp) catalyst was developed through a simple water-based preparation process for the successful reduction of p-nitrophenol to demonstrate the high catalytic efficiency and reusability of the noble metal nanocatalyst/pulp system. The composition, structure, and morphology of the AuNS/pulp catalyst were characterized by XRD, TGA, FE-SEM, ICP, TEM, FT-IR, and XPS. The AuNS/pulp catalyst was transformed into the pulp phase during the catalytic reaction and into the paper phase to recover the catalysts after use. Owing to this smart switching of physical morphology, the AuNS/pulp catalyst was dispersed more evenly in the solution. Therefore, it exhibited excellent catalytic performance for p-nitrophenol reduction. Under optimal conditions, the conversion rate of p-nitrophenol reached nearly 100% within 6 min and the k value of AuNS/pulp (0.0106 s−1) was more than twice that of a traditional chromatography paper-based catalyst (0.0048 s−1). Additionally, it exhibited outstanding reusability and could maintain its high catalytic efficiency even after fifteen recycling runs. Accordingly, the unique phase switching of this smart paper transformer enables Au nanosponge to transform into a highly efficient and cost-effective multifunctional catalyst. The paper transformer can support various nanocatalysts for a wide range of applications, thus providing a new insight into maintaining both high catalytic efficiency and reusability of nanocatalysts in the fields of environmental catalysis and nanomaterials.

A smart paper transformer supported nanocatalyst platform is developed based on the facile phase conversion between paper and pulp for both high-efficiency and high-reusability catalysis, with wide applications demonstrated by using Au nanosponge.  相似文献   

20.
The present study aimed at reducing the pollution of the waste generated by the potato starch industry to the environment and transform the potato pulp and wastewater into single-cell protein (SCP) to be used as animal feed. The chemical oxygen demand of the wastewater was reduced from 26,700 to 9,100 mg/L by batch fermentation with mixed cultures in an aerated 10-L fermenter. The SCP products, with a crude protein content of 46.09 % (higher than soybean meal), were found palatable and safe for mice. During the treatment process, the microbial community was analyzed using the terminal restriction fragment length polymorphism for bacterial 16S rRNA genes. The results of the analysis suggested that Curacaobacter/Pseudoalteromonas and Paenibacillus/Bacillus were the main microorganisms in treating potato starch processing wastes. The 150-m3-scale fermentation demonstrated a potential for treatment in industrial applications. Fermentation of potato pulp and wastewater without adding an extra nitrogen source was a novel approach in treating the potato starch processing waste.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号